
 www.thelancet.com/digital-health   Vol 4   September 2022 e657

Articles

Lancet Digit Health 2022; 
4: e657–66

*Joint last authors

Artificial Intelligence in 
Medicine Program, Mass 
General Brigham (A Hosny PhD, 
D S Bitterman MD, Z Ye PhD, 
B H Kann MD, 
Prof H J W L Aerts PhD, 
R H Mak MD), Department of 
Radiation Oncology, Brigham 
and Women’s Hospital and 
Dana-Farber Cancer Institute 
(A Hosny, D S Bitterman, 
C V Guthier PhD, I Pashtan MD, 
Z Ye, B H Kann, D E Kozono MD, 
Prof H J W L Aerts, R H Mak), 
Harvard Medical School, 
Boston, MA, USA; 
Computational Health 
Informatics Program, Boston 
Children’s Hospital, Boston, 
MA (D S Bitterman); Harvard 
Radiation Oncology Program, 
Brigham and Women’s 
Hospital, Dana-Farber Cancer 
Institute, Mass General 
Brigham, Boston, MA 
(J M Qian MD, H Roberts MD, 
S Perni MD, A Saraf MD, 
L C Peng MD); Harvard T H Chan 
School of Public Health, 
Massachusetts General 
Hospital and Harvard Medical 
School (D Christiani MD); 
Department of Radiation 
Oncology and Molecular 
Radiation Sciences, Johns 
Hopkins University School of 
Medicine, Baltimore, MD, USA 
(P J Catalano PhD); Radiology 
and Nuclear Medicine, CARIM & 
GROW, Maastricht University, 
Maastricht, Netherlands 
(Prof H J W L Aerts)

Correspondence to: 
Dr Raymond H Mak, Artificial 
Intelligence in Medicine 
Program, Mass General Brigham, 
Boston, MA 02215, USA 
rmak@partners.org

Clinical validation of deep learning algorithms for 
radiotherapy targeting of non-small-cell lung cancer: 
an observational study
Ahmed Hosny, Danielle S Bitterman, Christian V Guthier, Jack M Qian, Hannah Roberts, Subha Perni, Anurag Saraf, Luke C Peng, Itai Pashtan, 
Zezhong Ye, Benjamin H Kann, David E Kozono, David Christiani, Paul J Catalano, Hugo J W L Aerts*, Raymond H Mak*

Summary
Background Artificial intelligence (AI) and deep learning have shown great potential in streamlining clinical tasks. 
However, most studies remain confined to in silico validation in small internal cohorts, without external validation or 
data on real-world clinical utility. We developed a strategy for the clinical validation of deep learning models for 
segmenting primary non-small-cell lung cancer (NSCLC) tumours and involved lymph nodes in CT images, which is 
a time-intensive step in radiation treatment planning, with large variability among experts.

Methods In this observational study, CT images and segmentations were collected from eight internal and external 
sources from the USA, the Netherlands, Canada, and China, with patients from the Maastro and Harvard-RT1 
datasets used for model discovery (segmented by a single expert). Validation consisted of interobserver and 
intraobserver benchmarking, primary validation, functional validation, and end-user testing on the following datasets: 
multi-delineation, Harvard-RT1, Harvard-RT2, RTOG-0617, NSCLC-radiogenomics, Lung-PET-CT-Dx, RIDER, and 
thorax phantom. Primary validation consisted of stepwise testing on increasingly external datasets using measures of 
overlap including volumetric dice (VD) and surface dice (SD). Functional validation explored dosimetric effect, model 
failure modes, test-retest stability, and accuracy. End-user testing with eight experts assessed automated segmentations 
in a simulated clinical setting.

Findings We included 2208 patients imaged between 2001 and 2015, with 787 patients used for model discovery 
and 1421 for model validation, including 28 patients for end-user testing. Models showed an improvement over 
the interobserver benchmark (multi-delineation dataset; VD 0·91 [IQR 0·83–0·92], p=0·0062; SD 0·86 
[0·71–0·91], p=0·0005), and were within the intraobserver benchmark. For primary validation, AI performance 
on internal Harvard-RT1 data (segmented by the same expert who segmented the discovery data) was VD 0·83 
(IQR 0·76–0·88) and SD 0·79 (0·68–0·88), within the interobserver benchmark. Performance on internal 
Harvard-RT2 data segmented by other experts was VD 0·70 (0·56–0·80) and SD 0·50 (0·34–0·71). Performance 
on RTOG-0617 clinical trial data was VD 0·71 (0·60–0·81) and SD 0·47 (0·35–0·59), with similar results on 
diagnostic radiology datasets NSCLC-radiogenomics and Lung-PET-CT-Dx. Despite these geometric overlap 
results, models yielded target volumes with equivalent radiation dose coverage to those of experts. We also found 
non-significant differences between de novo expert and AI-assisted segmentations. AI assistance led to a 
65% reduction in segmentation time (5·4 min; p<0·0001) and a 32% reduction in interobserver variability 
(SD; p=0·013).

Interpretation We present a clinical validation strategy for AI models. We found that in silico geometric segmentation 
metrics might not correlate with clinical utility of the models. Experts’ segmentation style and preference might affect 
model performance. 
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Introduction
Lung cancer is the leading cause of cancer-related 
mortalities worldwide.1 Non-small-cell lung cancer 
(NSCLC) is the most common type of lung cancer, 
accounting for 85% of all diagnoses.2 Radiotherapy plays 
a key role in treating NSCLC, with one fifth of early-stage 
and half of late-stage patients receiving this treatment 
modality.3 Radiotherapy can be administered as a sole 

treatment, with systemic agents, precede or follow 
surgery, and play a role in palliation.

Radiotherapy’s time-effectiveness and cost-effective-
ness is affected by an expensive upfront invest ment: 
radiotherapy planning. Radiotherapy planning is crucial 
in maximising radiation to cancer tissue and minimising 
radiation to normal tissue. After image acquisition, 
planning steps include image registration, target and 
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adjacent organ segmentation, and dose distribution. The 
manual segmentation of the target—ie, primary tumour 
and involved lymph nodes—is one of the most time-
consuming planning tasks done by radiation oncologists.4 
This meticulous task requires interpreting images on a 
voxel-by-voxel basis to delineate the target volume. The 
advent of advanced radiotherapy planning and delivery 
techniques such as intensity-modulated radiotherapy 
and image guidance have enabled smaller doses to 
surrounding organs, but require high segmentation 
accuracy.5 Additionally, a large and well documented 
interobserver variability exists in target segmentation,6,7 
even in radiotherapy clinical trials with prespecified 
parameters.8 Finally, the accuracy of target segmentation 
can directly affect patient outcomes, with under-segmen-
tation decreasing tumour control and over-segmentation 
increasing toxicity risks.9

Several computer-aided tools have been proposed to help 
streamline radiotherapy planning.4 For segmentation 
tasks, semi-automated approaches, including segmen-
tation atlases, have had varying degrees of clinical utility.10 
Curating atlases requires substantial time and effort on the 
physician’s part, and the heterogeneity of their contents 
might diminish performance. More recently, artificial 
intelligence (AI) methods—deep learning, specifically—
have been proposed as promising alternatives.11 Deep 
learning algorithms can automatically learn feature 
representations from data, improving performance across 
multiple tasks.12 Although studies have explored the use of 

deep learning to automate radiotherapy target segmen-
tation and improve its accuracy and consistency,13 most 
remain at the proof-of-concept stage. As such, these studies 
are often confined to in silico validation in small internal 
cohorts without external validation. Among many 
promising results, only a few efforts show the clinical 
impact of these automated systems.14,15

In this study, we present a generalisable clinical 
validation strategy for therapeutic AI algorithms with the 
aim of bridging early proof-of-concept studies and 
prospective clinical trials. The strategy comprises four 
main components: benchmarks, primary validation, 
functional validation, and end-user testing (figure 1). To 
show the application of this strategy, we present a study 
in clinically validating deep learning models for 
radiotherapy targeting for NSCLC. 

Methods
Discovery data
We used Maastro and Harvard-RT1 datasets for model 
development. Maastro included 422 patients (stages I–IIIB; 
290 [69%] male, 132 [31%] female; mean age 68 years 
[range 33–91]) with histologically proven NSCLC and 
treated with radiotherapy alone (n=196 [46%]) or with 
radiotherapy with chemotherapy (n=226 [54%]). Patients 
were treated at Maastro Clinic, Maastricht, Netherlands, 
between 2004 and 2010 (appendix p 16). 

Harvard-RT1 included 501 patients (stages IA–IV; 
263 [52%] male, 236 [47%] female, 2 [<1%] unspecified; 

Research in context

Evidence before this study
We searched PubMed using the following search terms: 
“(machine learning OR artificial intelligence OR deep learning) 
AND (radiation oncology OR radiotherapy)”. We focused on 
articles in English using medical imaging from Jan 1, 2014, to 
April 1, 2020. Our search identified 1383 articles. Within the 
same search, we also identified studies that did end-user 
validation by deploying and testing artificial intelligence (AI) 
tools clinically, whether retrospectively or prospectively. 
Although deep learning applications in medical imaging have 
shown great promise, most studies remain at the proof-of-
concept stage, often validated in small cohorts and without 
external validation. Additionally, most are confined to in silico 
testing, with only a few investigating model performance in 
clinical settings. This insufficient evidence on real-world clinical 
utility ultimately translates to poor confidence in pursuing 
prospective clinical trials to clinically assess models.

Added value of this study
In this study, we developed a multifaceted strategy for the 
clinical validation of deep learning models, aimed at closing the 
translational gap that falls in between early in silico validation 
and larger-scale prospective clinical trials. The strategy 
comprises four components: (1) developing clinical benchmarks 

to understand the current standard of care; (2) primary 
validation in large external cohorts to understand the models’ 
generalisability profile; (3) functional validation to study the 
models’ effect on downstream clinical endpoints; and (4) end-
user testing in simulated clinical settings to assess models in 
their deployed state. Although in silico validation of AI models 
might provide evidence of clinical utility, measuring 
performance within the deployment context is often needed. 
Our work underscores the value of performing both these 
validation modes and provides insight into instances where 
disagreements between them occur, shedding light on 
potential issues such as the choice of evaluation metrics.

Implications of all the available evidence
Our findings highlight the importance of broader adoption of 
similar validation strategies that help close the translational gap 
for clinical AI applications. Such strategies might provide the 
high levels of confidence needed to pursue clinical AI trials in 
medicine, uncover model weaknesses, and quantify the time 
and effort needed to bring AI outputs to clinically acceptable 
levels. Our results also underscore the importance of generating 
data on human factors given our incomplete understanding of 
this area, together with studying physicians’ interactions with 
AI outputs and their overall satisfaction. 

See Online for appendix
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median age 73 years [range 39–89]) with histologically 
proven NSCLC referred for radiotherapy between 2001 
and 2015 at the Dana-Farber Cancer Institute and 
Brigham and Women’s Hospital, Boston, MA, USA. 
Target volumes were delineated by a single radiation 
oncologist (RHM; referred to as R1). 269 (54%) patients 
from this dataset were used for training, 96 (19%) for 
tuning, and 136 (27%) for testing. The test set was 
identical to that used in a published study, in which 
contestants competed to develop the best segmentation 
model.16 Using volumetric dice (VD) and surface dice 
(SD) metrics, the top solution from that contest was 
compared to results obtained here.

Data preprocessing
Data preprocessing involved resampling all data to a 
common voxel spacing of 1*1*3 mm³, using linear 
interpolations for CT images and nearest-neighbour 
interpolations for segmentations. CT Hounsfield units 
were normalised by clipping to 0·5th and 99·5th 
percentiles. Distributions of dataset characteristics, 
including gross tumour volume, CT image slice 
thickness, and use of intravenous contrast are given in 
the appendix (pp 62, 64–65). Data augmen tation details 
during training are also given in the appendix (p 6).

Model development
We used U-Nets, fully convolutional neural networks 
with CT volume inputs and corresponding binary seg-
mentation outputs. Our assisted and automated pipelines 
consisted of four three-dimensional (3D) U-Net models 
for the localisation and segmentation of lungs, primary 
tumour, and involved lymph nodes (figure 2A, B). Overall 

model structure closely followed that of original 
implemen tation17 with encoder and decoder paths 
connected via skip connections. Architecture parameters 
(eg, convo lution and pooling kernel sizes; appendix p 14) 
and model hyperparameters (eg, learning rate and batch 
size; appendix pp 6–7) were fine-tuned using nnU-Net 
(version 1.6.5).18

Metrics 
We used multiple metrics to assess model performance 
(appendix p 15), including VD (spatial overlap of two 
volumes, with 0 being no overlap and 1 being perfect 
overlap), as well as SD (fraction of surface within a 
threshold distance from another, with 0 being none of 
the surfaces within tolerance and 1 being entire surfaces 
within tolerance). We used the 75th percentile of 
interobserver variability (1·9 mm) as the threshold 
(appendix p 25-26).

Benchmarks
We developed the interobserver benchmark using the 
multi-delineation dataset19 of 20 patients (stages IA–IIIB; 
12 [60%] male, 8 [40%] female; median age 67 years 
[IQR 57–71]) with histologically confirmed NSCLC 
referred for radiotherapy at Maastro Clinic. Manual 
tumour delineations were done by five radiation 
oncologists, in addition to R1 (appendix pp 18, 68). 
Comparisons were drawn between the two residents 
and four attendings involved in the interobserver 
benchmark. The intraobserver benchmark was 
developed using 21 randomly sampled patients from 
the Harvard-RT1 test set. R1 did the segmentation task 
twice with a 3-month washout period. 

Figure 1: Clinical validation framework and experimental setup
AI=artificial intelligence. *Publicly available. †Limited access.
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Primary validation
We did further validation on four increasingly external  
datasets, with increasingly diverging characteristics from 
those of the training data: Harvard-RT2 segmented by 
other experts, RTOG-0617 from other institutions, and 
NSCLC-radiogenomics and Lung-PET-CT-Dx from 
diagnostic radiology. Harvard-RT2 included 387 patients 
(stages IA–IV; 165 [43%] male, 222 [57%] female; median 
age 69 years [range 32–92]) with histologically confirmed 
NSCLC referred for radiotherapy between 2011 and 2017 
at the Dana-Farber Cancer Institute and Brigham and 
Women’s Hospital. Tumour volumes were delineated by 
multiple physicians (appendix p 19). RTOG-0617 included 
403 patients with histologically confirmed NSCLC (stages 
IIIA–IIIB; 223 [55%] male, 155 [38%] female, 25 [6%] 
unspecified; median age 64 years [IQR 57–70]) from the 
phase 3 RTOG-0617 trial (NCT00533949).20,21 Patients 
were treated with radiotherapy between 2007 and 2011 at 
185 institutions across the USA and Canada (appendix 
pp 20, 69). NSCLC-radiogenomics included 142 patients 

with histologically confirmed early stage NSCLC 
(pathological stages T1–3, N0–2, and M0–1; 124 [77%] 
male, 38 [23%] female; mean age 68 years [range 42–86]) 
referred for surgical treatment at Stanford University 
School of Medicine (n=67) and Palo Alto Veterans Affairs 
(n=75) in California, USA, between 2008 and 2012.22 
Tumour segmentations were done by two thoracic radio-
logists (appendix pp 22, 70). Lung-PET-CT-Dx included 
307 patients with histologically confirmed NSCLC 
(clinical stages T1–4, N0–3, and M0–13; 163 [53%] male, 
144 [47%] female; mean age 61 years [range 28–90]) 
imaged at the Second Affiliated Hospital of Harbin 
Medical University, Harbin, China.23 Tumour location 
was annotated using per-slice bounding rectangles by 
five thoracic radiologists (appendix pp 23, 71).

Functional validation
Data used in the dosimetric analysis were from a random 
quartile-based subset of 28 patients in the RTOG-0617 
dataset (appendix p 44). Dose coverage was compared 

Figure 2: Primary validation results and comparison with benchmarks
Schematics for the assisted (A) and automated (B) segmentation pipelines. (C) The model performance in localising and segmenting primary non-small-cell lung cancer tumours and involved lymph 
nodes, as validated on five increasingly external datasets using the volumetric dice metric.
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between the planning target volume as used in the 
RTOG-0617 clinical trial and its AI-generated counterpart, 
generated from the gross tumour volume (appendix p 7). 
Two common dose metrics were calculated: V95, 
percentage target volume receiving at least 95% of the 
prescription dose; and D95, dose covering 95% of the 
target volume. Test-retest stability (geometric overlap 
between segmentations generated from different CT 
images of the same patient) was assessed using RIDER,24 
which included 26 patients with NSCLC (primary tumour 
≥1 cm; 12 men, 14 women; mean age 62 years [range 29–82]), 
each of whom underwent two CT scans of the chest within 
15 min. Images were acquired between January and 
September, 2007, at the Memorial Sloan-Kettering Cancer 
Center, New York, NY, USA. Tumour segmen tations were 
done by two thoracic radiologists (appendix p 72). 
Additionally, we tested the assisted models’ stability as a 
function of variation in input data by simulating multiple 
experts’ placement of seed points (50 simulations). 
Random seed points were generated within a 50 mm cube 
around the tumour’s centre of mass, and we measured the 
geometric overlap between the resultant segmentations. 
Timeframe stability between 3D and 4D CT data was tested 
in Harvard-RT2 (n=186 single timeframe 3D CT vs n=201 
multi-timeframe 4D CT). Model accuracy was assessed 
using CT of a thorax phantom containing 12 synthetic lung 
lesions (10 mm and 20 mm in effective diameter, six per 
lung). The phantom was scanned at Columbia University 
Medical Center, New York, NY, USA (appendix p 24).25 

Lesion volume as calculated from our AI-generated 
segmen tations was compared with that of three previously 
published segmentation models.26 Model performance 
based on the use of intravenous contrast in images 
(detected using a published algorithm27) was assessed 
through subgroup analysis. DSB conducted the model 
failure mode analysis by qualitatively assessing model 
results on the RTOG-0617 dataset and identifying cases of 
under-segmentation or over-segmentation.

End-user testing
We recruited and obtained written informed consent 
(under protocol DF/HCC 20-328) from eight radiation 
oncologists (DSB, JMQ, HR, SP, AS, LCP, BHK, and 
RHM) from the Department of Radiation Oncology at 
Brigham and Women’s Hospital. Experts had varying 
degrees of experience: three attendings (1, 2, and 9 years 
of experience) and five residents (appendix pp 9–10). 
Data used were a random quartile-based subset of 28 
patients in the RTOG-0617 dataset, further divided into 
two groups of 14 patients each (appendix p 44). In the 
first group, experts were asked to perform the segmen-
tation task de novo. For the second group, experts were 
asked to rate and edit a provided segmentation while 
masked to its source. In this second group, for 
ten patients, automated segmentations from the assisted 
pipeline were provided (AI assisted). For four patients, 
clinical segmentations from RTOG-0617 were provided 

(expert assisted; appendix pp 11, 73). Testing was done in 
a simulated clinical setting within MIM, the software 
used for this task at our institution (appendix p 74). 
Experts were provided with the following information 
per patient: age, sex, Eastern Cooperative Oncology 
Group score, histology, stage, and primary tumour lung 
lobe. Experts were also surveyed before, during, and after 
reviewing each case. After each case, experts were asked 
to qualitatively rate the task difficulty and quality of 
provided segmentations. Time for task completion was 
recorded automatically in the background. We used time 
measurements to compare between the de novo, expert-
assisted, and AI-assisted groups. Correlation between 
time and segmentation metrics (VD and SD) was also 
measured. Details on ethics approval and patient consent 
for the various datasets are given in the appendix (pp 1–6).

Statistical analysis
All statistical tests done were non-parametric, with a two-
tailed p value of less than 0·05 indicating significance. 
For two dependent groups, we used the Wilcoxon 
matched-pairs signed rank test. For two independent 
groups, we used the Mann-Whitney U rank test. For three 
or more independent groups, we used the Kruskal-Wallis 
H-test. For measuring correlation between two groups, 
we used the Spearman rank-order correlation coefficient. 
All analyses were done in python (version 3.8.0).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results 
Interobserver bench mark was VD 0·83 (IQR 0·77–0·88) 
and SD 0·72 (0·61–0·81; appendix pp 25–26). AI versus 
R1 yielded VD 0·91 (0·83–0·92) and SD 0·86 
(0·71–0·91), a significant improvement over the 
benchmark with VD (p=0·0062) and SD (p=0·0005; 
appendix pp 27–28). Additionally, AI versus R1 was 
found to be inversely correlated with the IQR of 
variability among all six experts (Spearman’s r=–0·74; 
p=0·0002; appendix p 29). With AI segmentations as 
reference, non-significant differences were detected 
between residents and attendings (appendix p 30).

Intraobserver benchmark was VD 0·88 (IQR 0·83–0·90) 
and SD 0·85 (0·80–0·93; appendix p 31). AI versus R1’s 
first read yielded VD 0·86 (0·83–0·87) and SD 0·79 
(0·72–0·90), with similar results for the second read 
(appendix p 33). For VD, non-significant differences were 
observed when both results were compared with the 
benchmark. For SD, AI versus R1’s first read was non-
significantly different than the benchmark, while AI 
versus R1’s second read was significantly lower (p=0·043; 
appendix pp 32–33).

First, we tested on the internal Harvard-RT1 dataset, also 
segmented by R1. Results of the assisted primary tumour 

https://en.wikipedia.org/wiki/Eastern_Cooperative_Oncology_Group
https://en.wikipedia.org/wiki/Eastern_Cooperative_Oncology_Group
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segmentation were VD 0·86 (IQR 0·81–0·89) and SD 
0·83 (0·73–0·91), a significant improve ment over 
previously published results16 (p<0·0001; appendix p 35). 
Automated primary tumour segmentation results were 
VD 0·83 (0·77–0·89) and SD 0·80 (0·75–0·83). Results 
for primary tumour and lymph node segmentation were 
VD 0·83 (0·76–0·88) and SD 0·79 (0·68–0·88) for the 
assisted model and VD 0·82 (0·70–0.88) and SD 0·74 
(0·62–0·83) for the automated model (n=3 [2%] 
localisation failure; appendix p 8; figure 2C).

Second, we tested the model on the internal Harvard-
RT2 dataset segmented by other experts in our 
institution. Results were VD 0·70 (IQR 0·56–0·80) and 
SD 0·50 (0·34–0·71) for the assisted model and VD 0·63 
(0·36–0·80) and SD 0·44 (0·23–0·62) for the automated 
model (n=40 [10%] localisation failure; appendix p 8; 
figure 2C).

Third, we tested the model on RTOG-0617 trial data.21 
Results were VD 0·71 (IQR 0·60–0·81) and SD 0·47 

(0·35–0·59) for the assisted model, and VD 0·69 
(0·54–0·82) and SD 0·44 (0·30–0·58) for the automated 
model (n=2 [0·5%] localisation failure; appendix p 8; 
figure 2C). We found non-significant differences between 
trial groups (p=0·47; appendix p 39), as well as between 
radiotherapy treat ment techniques (p=0·24; appendix 
p 40). 

Finally, we tested the model on two diagnostic datasets. 
For NSCLC-radiogenomics,22 results were VD 0·68 
(IQR 0·56–0·79) and SD 0·61 (0·37–0.85) for the assisted 
model, and VD 0·64 (0·50–0·79) and SD 0·55 
(0·30–0·82) for the automated model (n=9 [6%] 
localisation failure; appendix p 8; figure 2C). We found 
non-significant differences between lung lobes (p=0·36; 
appendix p 41). For Lung-PET-CT-Dx,23 results were VD 
0·66 (0·55–0·76) and SD 0·31 (0·22–0·43) for the 
assisted model, and VD 0·61 (0·42–0·74) and SD 0·27 
(0·16–0·42) for the automated model (n=27 [9%] 
localisation failure; appendix p 8; figure 2C).

Figure 3: Model failure modes and end-user testing
(A) Examples of model failure modes. Includes ten representative examples of model failures for both under-segmentation and over-segmentation scenarios (five 
cases each). Cases are ordered top to bottom in increasing model performance metrics. (B) Nine representative examples from the end-user testing. Depicted scores 
are calculated between clinical and AI segmentations. AI=artificial intelligence. SD=surface dice. VD=volumetric dice.
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To assess changes in radiation delivered as a result of 
using AI-generated segmentations, we did a dosimetric 
analysis (appendix pp 45–46). We found non-significant 
differences between clinical and AI planning target 
volumes across two common dose metrics: V95 (p=0·37) 
and D95 (p=0·47; appendix p 47).

Model stability across two separate CT scans of the 
same patient were assessed using RIDER24 (appendix 
p 48). AI versus radiologist on the first scan was non-
significantly different from the same comparison on the 
second scan (VD, p=0·25; and SD, p=0·29; appendix 
p 49). Radiologists’ variation in tumour volume across the 
two scans was non-significantly different from that of the 
AI models (p=0·19; appendix p 50). In terms of model 
stability as a function of variation in seed point placement, 
median predictions showed high stability with an IQR of 
0·02 for both VD and SD (appendix p 51). With regard to 
stability across CT timeframes, we found non-significant 
differences between 3D and 4D CT data (VD, assisted 

model p=0·14, automated model p=0·33; appendix 
pp 36–38).

Model accuracy was measured on CT of a thorax 
phantom containing nodules of known volume25 (appendix 
p 52). On average, models were found to underestimate 
nodule volume by 0·4 cm³, or 12% of known volume. 
Three published models also showed similar trends on the 
same data26 (appendix p 53). Models were also found to 
significantly over-perform on contrast-enhanced images 
(VD p=0·042; SD p=0·0043; appendix p 66).

Finally, model failure modes were examined through 
expert review. These included missing thoracic nodal 
stations originally undersampled in the discovery data 
(eg, supraclavicular nodes; appendix p 67), over-segmen-
tation into pericardium and collapsed lungs, and 
susceptibility to motion artifacts around the diaphragm 
(figure 3A).

Eight experts were asked to perform the segmentation 
task de novo, or rate and edit a provided segmentation 

Figure 4: Results from the end-user testing
(A) The volumetric dice score between clinical trial segmentations and each of de novo, expert-assisted (clinical segmentation provided), and AI-assisted 
(AI-generated segmentation provided) segmentations. (B) Answers to qualitative questions asked to experts during the end-user testing. (C) Time needed to 
complete the segmentation task. AI=artificial intelligence.
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while masked to its source (figure 3B). Provided 
segmentations were either clinical (expert-assisted) or 
AI-generated (AI-assisted). Using clinical segmentations 
as reference, we found non-significant differences 
between de novo (VD 0·70 [IQR 0·59–0·80]; SD 0·43 
[0·35–0.52]) and AI-assisted (VD 0·69 [0·60–0·83]; 
SD 0·38 [0·30–0·64]) segmentations (figure 4A; appendix 
p 54), with similar results across individual experts 
(appendix pp 55–56). When compared with de novo 
segmentation time (median 15·5 min), expert assistance 
led to a non-significant reduction of 24% (11·7 min; 
p=0·091), whereas AI assistance led to a significant 
reduction of 65% (5·4 min; p<0·0001; figure 4C). We 
found non-significant differences between de novo 
segmentations by residents and attendings (appendix 
p 57). When compared with the de novo IQR of 
interobserver variability, AI assistance led to a non-
significant reduction of 53%  for VD (p=0·092) and a 
significant reduction of 32% for SD (p=0·013; appendix 
pp 58–59).

We also collected qualitative survey data. For 77 (96%) 
of 80 AI segmentations, experts agreed that the provided 
segmentations improved their efficiency (figure 4B). 

Experts identified 58 (73%) AI segmen tations as being 
AI-generated (figure 4B). Finally, we found that VD and 
SD metrics did not correlate with the time required to 
edit AI segmentations, nor did they significantly stratify 
subgroups on the basis of expert rating and perceived 
difficulty. 63 (79%) AI segmentations were rated as 
“acceptable with minor modifications” (figure 5A). We 
also found significant correlations between metrics and 
tumour volume (VD, R=0·22, p<0·0001; and SD, 
R=–0·30, p<0·0001; figure 5B).

Discussion
In this study, we developed a multifaceted strategy for the 
clinical validation of deep learning models for radio-
therapy targeting, a crucial component of cancer therapy. 
Beyond establishing benchmarks, we performed multi-
tiered validation on internal and external datasets 
including clinical trial and diagnostic radiology data. We 
also carried out dosimetric validation—the ultimate 
functional objective of segmentation in this clinical 
context—and measured the models’ stability and 
accuracy. Finally, we did end-user testing to measure 
clinical utility and physician acceptance.

Figure 5: Analysis of segmentation metrics
(A) The correlation of segmentation metrics with time needed to edit AI segmentations, qualitative rating provided by experts, as well as the perceived challenge. 
Data used for this analysis are from the end-user testing when an AI segmentation was provided to experts (n=80, ten cases × eight experts). (B) The correlation of 
segmentation metrics with tumour volume (displayed on log scale). We used all validation datasets for this analysis (n=1421). AI=artificial intelligence.
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Starting with benchmarks, our results underscore the 
model’s ability in identifying challenging cases with large 
inter observer variability. Although we showed no 
difference in performance between residents and 
attending physicians, further work is needed to under-
stand the effect of experience on human–AI interaction 
and the potential of such models to augment physician 
training.

Our tiered validation process started with single-expert 
internal test data (Harvard-RT1) that most resembled the 
training data. We reported a significant improvement 
over previously published results with 45 different 
models tested on the same data.16 The decrease in perfor-
mance at the multi-expert internal test data (Harvard-
RT2) in the context of its relative stability on subsequent 
increasingly external datasets suggest that segmentation 
variability might be a function of treating physician 
preference and experience. Results from 4D CT data 
imply the models’ relevance towards modern imaging 
practices. Results from the diagnostic datasets highlight 
known differences in tumour definition between radio-
logists (anatomical knowledge) and radiation oncologists 
(therapeutic goals; appendix pp 42, 60). These findings 
stimulate further discussion around the off-label use of 
AI, where applications developed within one speciality 
are deployed in another, while emphasising the impor-
tance of radiologist input in radiotherapy planning.28

Our functional validation and end-user testing under-
score the importance of assessing segmentations beyond 
common geometric measures. Similar to previous 
studies,29 our dosimetric analysis showed no correlation 
between geometric and dosimetric measures. This 
relationship is likely to be confounded by factors affecting 
dosimetric measures including dose distrib ution, radio-
therapy treatment technique, beam arrange ment, and 
other patient-specific considerations. Additionally, we 
also found that geometric measures might not accurately 
reflect time savings and other qualitative endpoints 
(figure 5A). Our results also highlight undesired 
correlations between common metrics and tumour 
volume (figure 5B; appendix p 13). As such, an unmet 
need exists for new metrics that combine qualitative 
physician assessment with geometric, dosimetric, and 
time-related measures to accurately reflect clinical utility 
and acceptability.30

Model failure modes might be automatically detected 
with warnings that model outputs might be comprom-
ised, thereby bringing much needed trust into automated 
systems.31 In terms of tumour localisation failures, our 
automated models failed in 6% of validation cases, in 
line with false-positive rates in similar lung cancer 
diagnostic settings.32 Although these failures require 
fallback onto assisted models, future iterations might be 
augmented through the automated extraction of rough 
anatomic tumour location from other sources such as 
clinical notes to ensure accurate model localisation. 
Finally, the exact effects of imaging contrast on model 

performance remain unclear, as our models significantly 
over-performed on contrast-enhanced images despite 
being trained primarily on non-contrast data (appendix 
p 65).

Several limitations should be noted. Both our in silico 
and end-user testing are limited by their retrospective 
nature. Many of our discovery data relied on a single 
human expert. Although this method enabled us to 
highlight the model’s ability to encapsulate the skills of a 
given expert and share it with other clinicians as decision 
support, our models might have acquired a natural bias. 
Our radiologist versus radiation oncologist comparisons 
relied on AI-generated segmentations, which might not 
be fully representative of radiotherapy segmentations. 
Our dosimetric analysis might not always have reflected 
clinical reality because such analysis does not allow for 
manually editing the intermediate volume between 
gross tumour volume and planning target volume, 
namely the clinical target volume. Results from Lung-
PET-CT-Dx were calculated on tumour bounding boxes, 
and should therefore be interpreted accordingly. The 
design of our end-user tests did not allow for studying 
AI effects on intraobserver variability, nor did we 
incorporate PET imaging, commonly used in radio-
therapy planning for patients with NSCLC. Finally, 
although masking experts to the source of provided 
segmentations improved the fairness of the assessment 
of the AI model, this design did not test human bias 
towards a clinical AI algorithm.

Future directions include improving segmentation 
performance—both in silico and clinically—through 
experimentation with various model types, architectures, 
ensemble approaches, pooling of multi-expert segmen-
tations, validation on external benchmarks, and prospective 
testing. To enable separate reporting of segmentation 
results on lymph nodes, improved data curation strategies 
are needed to unambiguously isolate these from combined 
gross tumour volume segmen tations.

Early and thorough testing of AI tools in clinical 
environments is crucial for successful translation into 
clinical practice. Our four-component validation strategy 
allows for uncovering downstream consequences of 
implementing AI models in the clinic, those that might 
otherwise go unnoticed in typical in silico validation. We 
encourage the broader adoption of similar validation 
strategies that help close the translational gap for clinical 
AI applications.
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