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abstract

PURPOSE Clinical TNM staging is a key prognostic factor for patients with lung cancer and is used to inform
treatment and monitoring. Computed tomography (CT) plays a central role in defining the stage of disease. Deep
learning applied to pretreatment CTsmay offer additional, individualized prognostic information to facilitate more
precise mortality risk prediction and stratification.

METHODS We developed a fully automated imaging-based prognostication technique (IPRO) using deep learning
to predict 1-year, 2-year, and 5-year mortality from pretreatment CTs of patients with stage I-IV lung cancer. Using
six publicly available data sets from The Cancer Imaging Archive, we performed a retrospective five-fold cross-
validation using pretreatment CTs of 1,689 patients, of whom 1,110 were diagnosed with non–small-cell lung
cancer and had available TNM staging information. We compared the association of IPRO and TNM staging with
patients’ survival status and assessed an Ensemble risk score that combines IPRO and TNM staging. Finally, we
evaluated IPRO’s ability to stratify patients within TNM stages using hazard ratios (HRs) and Kaplan-Meier curves.

RESULTS IPRO showed similar prognostic power (concordance index [C-index] 1-year: 0.72, 2-year: 0.70, 5-
year: 0.68) compared with that of TNM staging (C-index 1-year: 0.71, 2-year: 0.71, 5-year: 0.70) in predicting 1-
year, 2-year, and 5-year mortality. The Ensemble risk score yielded superior performance across all time points
(C-index 1-year: 0.77, 2-year: 0.77, 5-year: 0.76). IPRO stratified patients within TNM stages, discriminating
between highest- and lowest-risk quintiles in stages I (HR: 8.60), II (HR: 5.03), III (HR: 3.18), and IV (HR: 1.91).

CONCLUSION Deep learning applied to pretreatment CT combined with TNM staging enhances prognostication
and risk stratification in patients with lung cancer.

JCO Clin Cancer Inform 5:1141-1150. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Lung cancer remains the leading cause of cancer death
in North America and worldwide.1 The TNM staging
system is used to classify the anatomic extent of can-
cerous tissue. This system helps to discriminate be-
tween patients into distinct groups, called TNM stages,2

and informs management of patients with cancer.3 In
patients with lung cancer, TNM staging is a key
prognostic factor, driving treatment and monitoring
decisions.4 Radiologic imaging, particularly computed
tomography (CT), plays a central role in defining the
stage of disease. Analysis of CTs currently relies upon
manual localization, classification, and measurement of
lesions and is subject to interobserver and intraobserver
variability.5-9 More precise prognostication could help
clinicians make personalized treatment decisions that
can guide de-escalation and intensification strategies to
optimize outcomes in patients with cancer.

The adoption of deep learning techniques in radiologic
research have shown promise in performing image

interpretation tasks including detection, classification,
and segmentation with close-to-expert performance.10-12

Beyond common image interpretation tasks, convolu-
tional neural networks (CNNs), a form of deep learning,
are able to identify and quantify complex features in
images that are not readily discernible to the naked eye.
A few studies have used CNNs to derive mortality risk
prediction in patients with lung cancer13-15; however,
most of this work relies upon manual steps, such as
segmenting the primary lesion,15 or placing seed
points16 or bounding boxes17 over regions of interest.
Prior imaging-based prognostication (IPRO) research
has shown that imaging features extracted not just from
the tumor itself but also from the surrounding tissue18-20

and body composition21-23 can provide additional
prognostic insight. A fully automated approach, in which
a system would analyze the entire thorax in a CT, may
complement traditional TNM staging of patients with
lung cancer and provide greater prognostic power in a
standardized manner that does not require manual
steps subject to interobserver variability.
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In this retrospective study, we propose an end-to-end deep
learning approach in which the entire thorax of individual
patients with lung cancer is automatically evaluated to
generate an IPRO score. Using publicly available pre-
treatment CTs split across a five-fold validation, we assess
how IPRO compares with and complements TNM staging
for purposes of 1-year, 2-year, and 5-year mortality risk
predictions in the withheld validation set. Furthermore, we
evaluate IPRO’s ability to stratify patients across and within
TNM stages. Finally, we review the distribution of known
prognostic clinical variables including age, sex, TNM stage,
and histology across IPRO’s risk deciles and quantify the
amount of attention placed on lung lesions.

METHODS

Data

We retrospectively reviewed publicly available pretreatment
CTs of patients with lung cancer that also contained survival
outcomes. Imaging data and associated clinical information
were obtained from six data sets24-29 made available in The
Cancer Imaging Archive (Data Supplement). A total of 1,
689 patients were selected who had a biopsy-confirmed
non–small-cell lung cancer diagnosis, survival information,
and at least one pretreatment axial CT. Patients diagnosed
with small-cell lung cancer were excluded. Mortality and CT
acquisition dates were used to compute survival time and
status at specified censoring dates (ie, 1 year, 2 years, and
5 years). Cases that were lost to follow-up before a given
censoring date were excluded from training and validation
(Data Supplement).

Given that some patients had multiple pretreatment CTs,
we limited the validation to only the final (ie, most recent)
pretreatment CT to assess the performance of IPRO and
TNM staging. The Data Supplement provides an overview
of the distribution of TNM stages and survival status among
the 5-year validation data set, which contained 1,110
patients (579 alive and 531 deceased) with a median age of
64 years (range: 43-88 years) and in which 62%weremale.

The median time between date of image acquisition and
last follow-up was 5.0 years. Additional data selection and
preprocessing details are provided in the Extended
Methods section in the Data Supplement.

IPRO Framework

The proposed IPRO framework consists of a thorax localizer
and a three-dimensional convolutional neural network
(3DCNN) that extracts imaging features automatically along
the axial, sagittal, and coronal directions, simultaneously
(Fig 1). The thorax localizer consists of an algorithm that limits
the model input to a 3D space (36 cm × 36 cm × 36 cm in
size) centered on the lungs, thus excluding features outside
of the thorax (eg, abdomen) and outside of the body (eg, CT
scanner table; see the Data Supplement for full description of
the thorax localizer model). Input size was determined by
assessing segmentation masks from the thorax localizer and
selecting the largest bounding box encompassing the lungs,
suitable for the given data set. The automatically identified
thorax region is then fed into the 3DCNN, which outputs
probability scores between 0 and 1 indicating 1-year, 2-year,
and 5-year mortality for a given CT.

The architecture of our 3DCNN is based on a widely adopted,
state-of-the-art, neural network called InceptionNet.30 This
architecture enables features to be learned without being
prone to overfitting, suitable for medical applications where
individual data points tend to be large but the number of
patients is few (comparedwith other computer vision tasks). To
make the two-dimensional InceptionNet 3D, transfer learning
is first applied to stabilize the network using ImageNet,31 and
then intermediate layers are duplicated in a new temporal
dimension (ie, z-axis). The use of transfer learning in this
manner has shown to be effective for preventing overfitting in
medical applications.32 The resulting architecture allows for
entire 3D CT volumes to be fed into the 3DCNNwithout further
modifications and incorporates rich features like volume of
tumors and features in peritumoral tissue that spanmultiple CT
slices, rather than just a single two-dimensional slice. Although
this architecture was originally intended for video sequence

CONTEXT

Key Objective
Lung cancer is the leading cause of cancer death worldwide. TNM staging derived from computed tomography (CT) plays a

central role in determining a lung cancer prognosis. This study explores deep learning’s ability to automatically analyze the
entire thorax of a patient with lung cancer and generate an imaging-based prognostication score from a pretreatment CT.

Knowledge Generated
When tested on 1,110 patients with stage I-IV non–small-cell lung cancer with known survival outcomes, imaging-based

prognostication complements TNM staging by enhancing prognostication and risk stratification.
Relevance
Prognostic insight beyond TNM staging can be automatically derived from the thorax using deep learning applied to pre-

treatment CT scans of patients with non–small-cell lung cancer. More accurate prognostication has the potential to inform
personalized treatment decisions.
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analysis,33 to date, it has also been used to diagnose pan-
creatic cancer using magnetic resonance imaging.34 We ex-
pand on related work, which detects and classifies
malignancies in lung cancer screening chest CTs,35 by pre-
dicting mortality risk for patients with confirmed lung cancer
diagnoses and incorporating a wider range of pretreatment
CTs from multiple data sets and sites.

Experimental Setup

To train and validate IPRO, we performed a five-fold cross
validation36 across six lung cancer data sets. This involved
randomly splitting the data into five groups, while ensuring
class balance based on survival status and TNM staging
distribution. We then iteratively withheld each group for
validation while training on the remaining four groups until
each group was used for validation (Data Supplement).
Models were trained to predict mortality as posterior prob-
abilities between 0 (low-risk) and 1 (high-risk) at time t, given
3D CT volumes, where t = 1, 2, or 5 years. We report the
average performance for eachmodel across five folds and the
standard deviation between folds in the Data Supplement.

To compare the prognostic power of IPRO to that of TNM
staging, generalized linear regression models were trained
using solely TNM staging information in the same 5-fold
cross-validation to predict t-year mortality. The glm library in
R was used for training and predicting regression models
on seven TNM subtypes (IA, IB, IIA, IIB, IIIA, IIIB, and IV).

Finally, the Ensemble models that combined IPRO and
TNM staging were generated by training a linear regression
model per fold, where the inputs were TNM staging and
IPRO mortality risk scores at time t.

Statistical Analysis

To compare risk scores with survival status at time t, we
report concordance index (C-index) and area under the
receiver operating characteristic curve (AUC). Pearson r2

correlations between IPRO scores and time-to-event from
date of CT acquisition are also reported. Statistical signif-
icance between models was assessed using a two-sample
two-tailed t-test.

IPROwas used to stratify patients with lung cancer, similar to
an approach adopted by Becker et al,37 where Kaplan-Meier
curves were generated per risk group. Each group is defined
as a subset of the patients in the validation set sorted by
ascending IPROmortality risk scores. To quantify differences
between predicted highest- and lowest-risk groups defined
as quintiles (ie, 20%) or deciles (ie, 10%) of the patients with
either the highest or lowest IPRO scores, we used the coxph
function to report hazard ratio (HR) and log-rank P-values.
All statistical analyses were performed in R.

Model Understanding

As the black box nature of CNNs limits our ability to un-
derstand why it made a particular outcome prediction, we
attempt to understand the algorithm by exploring associa-
tions between the outcome predictions and known prog-
nostic clinical variables like age, sex, TNM stage, and
histology across IPRO’s risk deciles. We also show Gradient-
weighted Class Activation Mapping (GradCAM)38 activation
maps as a visual explanation to indicate onwhich anatomical
regions within the thorax IPRO placed attention to generate
its mortality risk prediction. Such visualizations, although
preliminary, offer insight into a subset of the features learned
in the 3DCNN and attempt to shine a light into the black box
of deep learning–based predictions. We defined our regions
of interest by volumetrically segmenting measurable primary
lesions in a subset of 358 CTs in the validation set. For each
CT scan in this subset, we then quantify the model’s average
attention placed on the primary lesions and compare this to
the model’s average attention throughout the entire thorax.
Additional information about the lesion segmentation and
attention quantification is provided in the Extended Methods
section in the Data Supplement.

RESULTS

Mortality Risk Prediction

IPRO showed evidence of similar prognostic power com-
pared with that of TNM staging in predicting 1-year, 2-year,
and 5-year mortality (Fig 2). Although the average C-index
was lower for IPRO compared with TNM for 2- and 5-year
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FIG 1. Proposed IPRO mortality risk prediction pipeline. During inference, lung and skin segmentation masks are extracted from a CT volume (left), after
which a region encompassing the thorax is extracted (middle) and fed into the IPRO model (right). 3D, three-dimensional; CT, computed tomography;
IPRO, imaging-based prognostication.
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mortality, standard deviations suggest performance is
similar for both TNM and IPRO (Data Supplement). When
stage IV patients were removed from the validation set,
average C-index for IPRO increased to 0.72 for 5-year

mortality risk assessment (Data Supplement). The En-
semble model, which combines IPRO and TNM staging
information, yielded significantly superior prognostic per-
formance at 2-year and 5-year time intervals (P≤ .01) when
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FIG 2. C-index scores for the three
models (TNM, IPRO, and Ensemble)
that predict lung cancer mortality risk at
1 year, 2 years, and 5 years. Error bars
denote standard deviation between
folds. C-index, concordance index;
IPRO, imaging-based prognostication.
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FIG 3. Kaplan-Meier curves for 5-year
IPRO mortality risk deciles for all TNM
stage groups. HRs, P-values, and num-
ber of patients at risk per year are pro-
vided for each decile. HR, hazard ratio;
IPRO, imaging-based prognostication.
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compared with that of TNM alone (Fig 2). The Data Sup-
plement summarizes the results across metrics including
C-index, area under the curve, and Pearson r2.

Patient Stratification

Kaplan-Meier curves in Figure 3 show risk stratification by
IPRO deciles of all patients with lung cancer (stages I-IV)
included in the 5-year validation. HRs between each decile
and the highest risk group (ie, decile 10) were statistically
significant (P , .001). HRs between each decile and the
lowest risk decile (ie, decile 1) were statistically significant
for deciles ≥ 6. Kaplan-Meier curves illustrating the 1-year
and 2-year IPRO deciles are shown in the Data
Supplement.

We assessed IPRO’s ability to stratify patients within each
TNM stage via high-risk and low-risk quintiles (Fig 4).

Stage I patients in the highest risk IPRO quintile had a 8.6-
fold (95% CI, 4.5 to 16.3; P , .001) increased 5-year
mortality hazard compared with stage I patients in the
lowest-risk quintile. Similarly, in stage II and stage III,
patients in the highest-risk IPRO quintile had a 5.0-fold
(95% CI, 2.3 to 11.2; P, .001) and 3.2-fold (95% CI, 2.1
to 4.8; P , .001) increased 5-year mortality hazard
compared with stage II and stage III patients in the lowest
risk quintile, respectively. Across all TNM stages, the
weakest patient stratification existed for stage IV patients
where the highest risk IPRO quintile had a 1.9-fold (95%
CI, 1.1 to 3.5; P = .033) increased 5-year mortality hazard
compared with stage IV patients in the lowest risk quintile.
Kaplan-Meier curves by TNM stage illustrating the 1-year
and 2-year IPRO quintiles are shown in the Data
Supplement.
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FIG 4. Stage-specific Kaplan-Meier curves for 5-year IPRO mortality risk quintiles: (A) stage I, (B) stage II, (C) stage III, and (D) stage IV. IPRO, imaging-
based prognostication.
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Model Understanding

To further explore IPRO’s 5-year mortality predictions, we
assessed the distribution of known prognostic variables
including age, sex, TNM stage, and histology across the
IPRO risk deciles (Table 1). Comparing the characteristics
of patients IPRO deemed lowest risk (decile 1) with those
deemed highest risk (decile 10), the median age increases
from 62 to 68 years and the sex composition shifts from
31.5%male in the lowest-risk patients to 67.0%male in the
highest-risk patients. The most common histologic subtype
in patients comprising the lowest-risk decile was adeno-
carcinoma (46%), whereas squamous cell carcinoma
(37%) and large cell carcinoma (24%) accounted for the
majority of highest-risk patients. Patients with lung cancer
diagnosed as TNM stages I and II account for 78.4% of
patients in the lowest-risk decile but only 29.4% of patients
in the highest-risk decile.

GradCAM activation maps indicated that IPRO learned to
place outsized attention on primary lesions. On average,
54% more attention was placed on primary lesions (0.245)
compared with the average attention throughout the thorax
(0.159), which was statistically significant (P , .001). Fi-
nally, we reviewed GradCAM activation maps to qualita-
tively assess on which anatomical regions within the thorax
IPRO placed attention to generate the 5-year mortality risk
prediction. In Figure 5, three representative sample cases
are provided depicting areas that received the greatest
attention (red) and the least attention (blue). Hand-drawn
white ellipses (not available to IPRO) denote areas con-
taining primary lesions.

DISCUSSION

Staging classification systems enable physicians to com-
municate information about an individual tumor or group of
tumors in a standardized way.39 The anatomic extent of

disease is a major factor affecting prognosis and informs
the appropriate treatment selection. We demonstrate that
deep learning may provide additional prognostic insight
based on both known and unknown features present in
pretreatment CTs in a quantifiable and continuousmanner.
Our end-to-end fully automated framework, IPRO, was
designed to ingest CTs of varying sources and imaging
protocols and automatically analyze the 3D region
encompassing the thorax. IPRO predicted mortality con-
sistently and accurately at 1-year, 2-year, and 5-year time
intervals, and generated similar prognostic performance to
TNM staging, while also stratifying patients across and
within TNM stages. By combining IPRO with TNM, the
Ensemble model showed improved performance across all
time intervals, suggesting that IPRO-derived imaging fea-
tures may complement human-derived features.

Subject to further prospective validation, IPRO could have
the potential to guide treatment intensification and de-
escalation strategies. Akin to molecular biomarkers that
have revolutionized the approach to systemic therapies in
lung cancer, the use of prognostic imaging biomarkers may
help personalize treatment decisions. For example, stage I
patients deemed high risk have a prognosis similar to stage
II patients andmay benefit from the addition of neoadjuvant
and/or adjuvant systemic therapy, which is currently not the
standard of care. TNM staging captures the extent of
disease in the entire body, including metastatic disease,
whereas IPRO explores only the chest. This likely explains
why IPRO does not stratify stage IV patients as well as stage
I-III patients (Fig 4). Although IPROmay be better suited for
early-stage lung cancer prognostication,40 where tumor
burden is expected to be localized within the chest, we
demonstrated that combining IPRO with TNM provided a
better prognostic prediction in all three time points. Given
the variability and the limited data set used in this study, we

TABLE 1. Distribution of Known Prognostic Factors by IPRO Risk Decile Including Age, Sex, TNM Stage and Histology

IPRO Risk Decile Median Age Sexa (Male/Female)

Stage Histologya

I II III IV SqCC AC LCC Other

1 (low) 62 35/76 82 5 11 13 12 51 3 45

2 64 52/59 68 3 22 18 33 36 4 38

3 63 50/59 70 7 18 16 23 45 3 38

4 63 62/48 61 7 27 16 30 41 5 34

5 63 76/35 65 7 22 17 24 54 4 29

6 64 73/35 58 15 23 15 27 45 6 30

7 66 90/16 50 15 31 15 31 44 5 26

8 65 87/23 53 15 30 13 34 41 4 31

9 68 75/30 42 23 40 6 34 34 13 24

10 (high) 68 73/36 17 15 79 0 40 20 26 23

Abbreviations: AC, adenocarcinoma; IPRO, Image-based prognostication; LCC, large cell carcinoma; SCC, small cell carcinoma; SqCC, squamous cell
carcinoma.

aExcludes 20 patients that are missing sex and histology information and 120 patients with SCC.
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expect that, when examined using a larger data set, per-
formance may increase.

In our model development, we enabled IPRO to consider
prognostic features across the entire thorax, eliminating the
need for radiologists to manually annotate regions of in-
terest, such as primary tumors. Manual annotation is a
time-consuming process, requires radiologic expertise, is
subject to inter-reader variability,41,42 and enforces the
assumption that only annotated regions of interest are
correlated with outcomes. However, not defining regions of
interest as the model input limits our ability to understand

what features IPRO considered to generate predictions. In
reviewing regions of the CT volume that received the
greatest attention by IPRO (Fig 5), our preliminary results
indicate that IPRO gravitated toward tissue comprising
primary lesions, suggesting that IPRO learned that this
tissue has prognostic value. Peritumoral areas also received
attention (Fig 5), suggesting that such areas may hold
additional prognostic insight.18-20 Evaluating distributions of
known prognostic variables such as age and sex for patients
across IPRO’s predicted risk groups (Table 1) revealed that
patients predicted to be in the highest-risk group (decile

FIG 5. GradCAM attention heatmap for patients in the highest IPRO mortality risk group (decile 10). Red denotes areas that received greatest
attention from the model. The white circle denotes the region of the primary tumor. GradCAM, Gradient-weighted Class Activation Mapping;
IPRO, imaging-based prognostication.
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10) were on average age 6 years older and mostly male
compared with those predicted to be in the lowest-risk
group (decile 1). Histology subtypes in decile 10 were also
more likely to exhibit large cell carcinoma and squamous
cell carcinoma subtypes, consistent with findings from
previous studies that these subtypes are associated with
worse outcomes.43,44

Prognostic features unrelated to cancerous tissue, such as
coronary artery calcification, size of the heart, body com-
position, or pulmonary emphysema, may have been learned
and considered by the model. This, however, remains
speculative given the black box nature of deep neural net-
works, and further developments in machine learning
techniques are required to explore this hypothesis. We are
currently training and evaluating region-specific 3DCNNs to
better understand the anatomic origins of IPRO’s predictions.

Although IPRO shows great potential, further improvements
may prove advantageous for lung cancer prognostication.
Treatment decisions are usually based on the extent of
disease in addition to patient, tumor, and environmental
factors.39 It is yet to be determined how IPRO will perform
when additional clinical variables like pulmonary function
and treatment type are introduced into the model. Future
work will explore how clinical variables and longitudinal

imaging can be incorporated to further refine prognostic
accuracy and derive actionable insights.

We note there are some limitations to this study. First, this is
a retrospective study, and more work is needed to validate
predictions on larger, independent data sets, as well as in
prospective studies. Second, our models were validated on
pretreatment CTs and, therefore, treatment decisions were
not considered. The impact of treatment on survival is
certainly a factor to be considered in future studies, par-
ticularly given the recent advances in systemic treatment
for advanced lung cancer. Also, we used inconsistent
clinical and pathologic TNM staging as a comparator,
which is agnostic in relation to comorbidities and treatment
effectively applied. Third, a significant proportion of our
patients were from the National Lung Screening Trial,24 and
therefore, more heavily skewed toward earlier-stage can-
cers and patients age 55-74 years who have 30 or more
pack-years of smoking history. Finally, clinical TNM staging
was not available for all CTs in the available data sets,
limiting the total number of patients included in this study.

In conclusion, deep learning applied to pretreatment CTs
combined to TNM staging may enhance prognostication
and risk stratification in patients with lung cancer. Pro-
spective testing and validation of the IPRO model in a large
population of patients with lung cancer is warranted.
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