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Handcrafted versus deep learning radiomics for prediction of cancer 
therapy response

In The Lancet Digital Health, Bin Lou and colleagues1 
apply deep learning methods to analyse pre-treatment 
CT scans in a retrospective cohort study of 944 
patients (849 in the internal study cohort and 95 in the 
independent validation cohort) treated with stereotactic 
body radiation therapy, a form of high-dose, pinpoint 
radiation therapy for lung tumours. The study presents 
a novel analysis by integrating traditional radiomics 
features through multi-task learning, applying a time-
based survival analysis, and incorporating new deep 
learning methods including a three-dimensional (3D) 
convolutional neural network to analyse lung tumours 
before treatment. The authors input pre-therapy lung 
CT images into Deep Profiler, a multi-task deep neural 
network that has radiomics incorporated into the 
training signal. They combined these data with clinical 
variables to derive iGray, an individualised radiation 
dose that estimates the probability of treatment failure 
to be below 5%. Models that included Deep Profiler 
and clinical variables predicted treatment failures with 
a concordance index of 0·72 (95% CI 0·67–0·77), a 
significant improvement compared with traditional 
radiomics (p<0·0001) or clinical variables (p<0·0001) 
alone. The potential clinical applications of such models 
include identifying tumours at the highest risk of 
resistance to radiation therapy, and personalised dosing 
of radiation therapy to maximise likelihood of tumour 
control.

This study is representative of a major turning 
point in the underlying radiomics methodologies 
used in treatment response prediction and prognosis, 
specifically in radiation therapy with broader 
implications across other cancer therapies. Traditional 
radiomics makes use of handcrafted features and has 
been studied extensively as an imaging biomarker to 
predict cancer outcomes and responses to therapy.2,3 
The handcrafted radiomics approach involves manual 
segmentation of the region of interest (eg, the tumour) 
on medical imaging, and extraction of thousands of 
human-defined and curated quantitative features from 
the region of interest, which describe tumour shape and 
texture among other characteristics. In the final step, 
the approach involves application of machine learning 

methods to identify the imaging features that are 
associated with a given clinical endpoint. However, the 
human-derived nature of traditional radiomics methods 
has been criticised for introducing a source of human 
bias into the process;4 there have been concerns of 
reproducibility5 due to the intra-reader and inter-reader 
variability that results from the reliance on manual 
segmentation of the tumour, and due to variation in 
imaging and pre-processing techniques for feature 
extraction. Moreover, the value of traditional radiomics 
has recently come under question with the advent 
of deep learning methods and consequent proof-of-
principle applications in predicting cancer outcomes.6,7 
For many of the deep learning radiomics applications, 
region of interest definition is based on a single point 
placement within the tumour volume, essentially 
replacing full tumour segmentations with approximate 
localisation and minimising the need for human 
input. Additionally, deep learning methods allow for 
automated learning of relevant radiographic features 
without the need for previous definition by researchers. 
In turn, these abstract representations have enabled a 
larger learning capacity, boosting generalisability and 
accuracy while reducing potential bias.8

Some key caveats remain for clinical use of the deep 
learning model proposed by Lou and colleagues.1 
Firstly, the radiation dose delivered via stereotactic 
body radiation therapy for lung cancers represents 
the upper limit of what can be safely delivered to treat 
cancer in the human body with current technological 
capabilities. Of note, other tumours are often treated at 
substantially lower biological doses, and this study does 
not capture that range of radiation dose and tumour 
response curves. Secondly, radiation regimens used 
for stereotactic body radiation therapy are typically 
achievable only for localised (eg, stage I lung cancers) 
and small tumours (e.g. <5 cm diameter), and thus 
these dose predictions are not easily generalisable to 
more advanced tumours. Lastly, the model is built on 
a relatively rare event (3-year cumulative incidence 
of local failure was 13·5% in the overall population) 
which is an advantage to patients because it means 
stereotactic body radiation therapy works well, but a 
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disadvantage for predictive model building because of 
the increased risk of over-fitting.

In this study, the authors chose to identify 
handcrafted radiomics features as ground truth 
while comparing them to features identified by deep 
learning methods. The level of agreement between 
these two sets of features was then used as a cost 
function to train and optimise the predictive model. 
This method was understandably chosen as a means 
to provide a connection to the previous traditional 
radiomics landscape and greater interpretability. 
However, we believe that deep learning can emerge as 
an independent methodology that does not need to rely 
on handcrafted radiomics to move forward. Combining 
traditional radiomic features into deep learning models 
risks incorporating the aforementioned known human 
biases into the model. Additionally, a combined 
approach does not address the interpretability 
problem since even most mathematically-derived 
handcrafted features capture uninterpretable imaging 
characteristics that cannot be discerned by the human 
eye. Nevertheless, the challenges of traditional 
radiomics approaches such as lack of reproducibility and 
interpretability as well as over-fitting on small datasets 
will only be amplified in deep learning-driven prediction 
models of cancer outcome. Fortunately, interpretability 
of features learned through neural networks is an 
active area of research,9 while sharing and transparency 
initiatives are paving the way for larger curated cancer 
imaging repositories.10

Deep learning may also allow the decoding of 
new insights from cancer images and non-intuitive 
information that is uncharted thus far. We look with 
great interest at the saliency mapping in figure 5 of the 
Article, which identifies the regions of the CT scan in 
and around the tumour that are most associated with 
the predicted outcome of local tumour recurrence. Our 
group identified similar peri-tumoural localisation when 
performing activation mapping for a 3D convolutional 
neural network trained for a prognostication task 

in non-small lung cancer patients, which suggests 
potentially important imaging characteristics at the 
cancer-normal tissue interface.7 Although these findings 
are preliminary and qualitative in nature, future work to 
understand the biology of this interface in relation to 
cancer therapy response prediction, and perhaps more 
importantly applying deep learning radiomics to target 
localised cancer therapies such as radiation therapy and 
surgery, represent a truly exciting new frontier of cancer 
care.
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