
ModelHub.AI:
Dissemination Platform for Deep Learning Models

Ahmed Hosny​*​†​1,2,4​, Michael Schwier​*​3,4​, Christoph Berger​1,5 ​, Evin P Örnek​5​, Mehmet Turan​6​, Phi V Tran​7​ , Leon
Weninger​8​, Fabian Isensee​9​, Klaus H Maier-Hein​9​, Richard McKinley​10​, Michael T Lu​1,4,11,12​, Udo Hoffmann​1,4,11,12​,

Bjoern Menze​5​, Spyridon Bakas​13,14​, Andriy Fedorov​3,4​, Hugo JWL Aerts​‡1,2,3,4,11,15
1​Artificial Intelligence in Medicine (AIM) Program, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

2​Radiation Oncology & ​3​Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School,
Boston, MA, USA

 ​4​Harvard Medical School, Boston, MA, USA
5​Institute for Advanced Study, Department of Informatics, Technical University of Munich, Munich, Germany

6​Max Planck Institute for Intelligent Systems, Stuttgart, Germany
7​Booz | Allen | Hamilton, McLean, VA, USA

8​Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
9​Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany

10​Support Centre for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology Inselspital,
Bern University Hospital, Bern, Switzerland

11​Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
12​Cardiac MR PET CT Program, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
13​Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA

14​Radiology & Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
PA, USA

15​Radiology and Nuclear Medicine, GROW & CARIM, Maastricht University, Maastricht, Netherlands
*​Authors contributed equally

 † ​ahmed_hosny@dfci.harvard.edu​ ‡ ​haerts@bwh.harvard.edu

Abstract​— Recent advances in artificial intelligence research
have led to a profusion of studies that apply deep learning to
problems in image analysis and natural language processing
among others. Additionally, the availability of open-source
computational frameworks has lowered the barriers to
implementing state-of-the-art methods across multiple domains.
Albeit leading to major performance breakthroughs in some
tasks, effective dissemination of deep learning algorithms
remains challenging, inhibiting reproducibility and
benchmarking studies, impeding further validation, and
ultimately hindering their effectiveness in the cumulative
scientific progress. In developing a platform for sharing research
outputs, we present ModelHub.AI (www.modelhub.ai)​, a
community-driven container-based software engine and platform
for the structured dissemination of deep learning models. For
contributors, the engine controls data flow throughout the
inference cycle, while the contributor-facing standard template
exposes model-specific functions including inference, as well as
pre- and post-processing. Python and RESTful Application
programming interfaces (APIs) enable users to interact with
models hosted on ModelHub.AI and allows both researchers and
developers to utilize models out-of-the-box. ModelHub.AI is
domain-, data-, and framework-agnostic, catering to different
workflows and contributors' preferences.

Keywords​— ​Artificial Intelligence, Deep Learning,
Dissemination, Container, Framework

I. I​NTRODUCTION

The generation of large amounts of data,
availability of specialized computational hardware,
as well as advancements in machine learning, have
all led to the recent profusion of artificial
intelligence (AI) applications in fields ranging from
computer vision ​[1] and natural language
processing ​[2] to radiology ​[3] and beyond.
Moreover, the availability of over a dozen
open-source deep learning computational
frameworks have immensely lowered the barriers to
entry and utilization, in addition to allowing
state-of-the-art methods to be implemented in a few
lines of code. Despite these reported successes and

mailto:ahmed_hosny@dfci.harvard.edu
mailto:haerts@bwh.harvard.edu
https://paperpile.com/c/rHFUWn/NCNpz
https://paperpile.com/c/rHFUWn/gW9Ti
https://paperpile.com/c/rHFUWn/bs4ND

widespread adoption, issues around the
transparency and reproducibility of studies continue
to hamper progress in AI research, and have been
compared to those that have burdened medicine,
psychology, and other fields over the past decade
[4]​. In a 2018 survey of 400 AI studies, none have
reported all the variables needed to reproduce the
experiments, only 6% shared code, 30% shared test
data, and 54% shared pseudocode ​[5]​. Another
effort surveyed 30 text mining studies and reported
that important explicit information regarding
datasets, study parameters, randomization control,
and software environments were lacking in most
studies ​[6]​. Finally, and for studies that do share
methods, ensuring its longevity and avoiding
broken links to online resources is rather
challenging: 18% of 704 natural language
processing papers that did publish training data
referenced links that were broken or deprecated
within five years of publication ​[7]​.

Shortcomings in the dissemination of AI
research outputs are a result of multiple related
factors. Unpublished or inadequately published
code is perhaps the primary factor and may be a
result of lack of resources, the heavy burden of
distribution and maintenance, incomplete
documentation, as well as intellectual property and
licensing restrictions. The highly diverse landscape
of frameworks used to perform deep learning
studies is another contributing factor, making
interoperability and cross-framework
implementation rather challenging. Some of these
frameworks exhibit fundamentally different
computational graph definitions, including
declarative "define-and-run" definitions for
predefined static graphs, as well as imperative
"define-by-run" graphs that are defined dynamically
via computation. As a result, transitioning from one
to the other comes with a steep learning curve given
differences in variable declarations and debugging.

Additionally, the development of deep learning
frameworks is also highly volatile given their
relatively recent debut. Popular frameworks (e.g.,
Torch​, ​CNTK, and ​Theano​) ​are no longer under
active major development, while once independent
frameworks (e.g., ​Caffe2 and ​PyTorch​) have now
merged into a single library. This volatility
introduces uncertainty into the sharing of methods,
and ultimately inhibits their utilization and
implementation by the community.

Despite these challenges, some authors -
together with the wider open-source community -
continue to share code and implement studies in an
ad-hoc fashion. Although originally designed for
software version control, repositories in web-based
services (e.g., ​GitHub​) host many of these
implementations. These repositories are relatively
homogenous as they mainly comprise models for
object localization and classification in
photographic images as part of the ImageNet Large
Scale Visual Recognition Challenge . Additionally, 1

given the lack of standardized formats and test
cases, together with the wide range of
documentation scope and breadth, proper execution
of code from these repositories may require
significant trial-and-error and ensuring
completeness is thus often unattainable. Many deep
learning frameworks host collections of working
models often referred to as "model zoos". However,
these are almost exclusively comprised of models
from high profile studies only, are
framework-specific by default, and occasionally
lack documented pre- and post- processing
pipelines where only the pretrained model is shared.
As a last resort for studies that lack code
implementations, some efforts have turned to
automating information extraction from figures,
diagrams, and tables in research manuscripts and
converting these into abstract computational graphs

1 http://www.image-net.org/challenges/LSVRC/

https://paperpile.com/c/rHFUWn/sRD15
https://paperpile.com/c/rHFUWn/f2Ozl
https://paperpile.com/c/rHFUWn/BEmr6
https://paperpile.com/c/rHFUWn/N9Fcq

[8]​. Finally, and while significant efforts have been
aimed at curating data for public dissemination
through machine learning competitions and
challenges ​[9,10]​, no comparable efforts are being
made in the inverse direction of making solutions -
that have been developed using this data - publicly
available. As such, a systematic ‘backward
translation’ of models into research is much needed.

In this study, we develop a medium for the
sharing of deep learning research outputs, in line
with the FAIR principles ​[11] and with a focus on
transparency, reproducibility, and ease of both
contribution and consumption. As a complement to
scientific manuscripts, we present ModelHub.AI
(further referred to as ModelHub), a
community-driven software engine and template for
the structured dissemination of deep learning
models. For contributors, the ModelHub engine
controls data flow throughout the inference cycle,
as well as input loading and type casting
out-of-the-box. The engine is also extensible
allowing for processing multiple data types, making
it both domain- and data-agnostic. On the other
hand, the contributor-facing ModelHub template
allows for focus on implementation-specific
operations including inference and pre- and
post-processing, and thereby reducing the effort and
time required to share code. On the receiving end,
users interact with models hosted on ModelHub
through standard ​Python and RESTful application
programming interfaces (APIs) that return
information about a given model or inference on a
given input. This facilitates direct integration into
users' benchmarking routines and additional
validation studies. ModelHub is also
container-based. In addition to the added
portability, this allows ModelHub to cater to
different frameworks and preferences. ModelHub
aims to be a repository of deep learning models
with accompanying scientific manuscripts allowing

for the pairing of these two distinctly different
research dissemination media. Finally, ModelHub is
open-source enabling more advanced users to
further explore containerized models beyond the
API, and giving contributors flexibility in choosing
appropriate model sharing licenses.

II. A​RCHITECTURE
The ModelHub architecture (Fig. 1) comprises

three main components: a containerization scheme
for runtime environment control, an engine for data
flow and processing, and a model-specific template
provided by the respective contributors.

Fig. 1. ​Overall ModelHub architecture illustrating the container (orange),

engine (blue), and model template populated by contributors (green).

A. Containerization and Runtime Environments
ModelHub uses ​Docker containers (Fig. 1, 2

orange) for executing models, an industry standard
for micro-service virtualization. ​Docker and other
container infrastructures (e.g., ​rkt) were originally 3

designed for application deployment. ModelHub
utilizes a stacked ​Docker ​image configuration (Fig.
2). Starting with a base operating system image, ​the
model image is built to encompass the contributed
model's runtime environment. This often includes
the deep learning framework, as well as other ​Linux
packages and ​Python libraries. The ​ModelHub
image ​encompasses the ​model image and adds the
ModelHub engine as well as its runtime
environment. The deployment image is optional and
allows for incorporating the model source for a
fully contained image that can be directly deployed

2 https://www.docker.com/
3 https://coreos.com/rkt/

https://paperpile.com/c/rHFUWn/BWS1b
https://paperpile.com/c/rHFUWn/zQsK+uNOr
https://paperpile.com/c/rHFUWn/xpEi

into container orchestration systems (e.g.,
Kubernetes). This stacked design features images 4

with gradually increasing volatility: images
containing model runtime being less volatile and
unlikely to change - and conversely the actively
developed ModelHub engine being more volatile.
As such, ModelHub engine and API updates can be
backward compatible with existing models by
simply rebuilding images. Finally, the decoupling
of the contributed model runtime environment from
its source files (​model image vs ​deployment image
respectively) enables source files to be hosted and
updated in an efficient and isolated manner, in
addition to allowing the model runtime
environment to be reused across multiple different
models with identical requirements.

Fig. 2.​ Stacked ​Docker​ image configuration allows for backwards

compatibility and reusable images across models.

B. ModelHub Engine
The ModelHub engine (Fig. 1, blue) comprises

4 main classes. The ​loader and ​converter classes
handle the loading of input data and conversions to
numpy arrays respectively. Separating these
responsibilities allows for pre-processing of data in
its native format, in array format, or in both as per
the contributor's pipeline. The ​Python Imaging
Library (PIL) and ​SimpleITK (a ​Python ​wrapper 5

for a subset of the ​Insight Segmentation and
Registration Toolkit (ITK) functionality) ​[12] are
two currently employed libraries. Future extensions
and additional libraries are possible given the
chain-of-responsibility pattern employed in the
design. The third class is the ​model class where

4 ​https://kubernetes.io/
5 https://github.com/python-pillow/Pillow

model initialization, loading, and inference
functions are housed. Finally, the ​processor class
handles data flow throughout the entire inference
cycle: loading, converting, pre-processing, and
feeding data into the model, in addition to
post-processing.

Access to the model and its features is possible
through a ​Python ​API that interfaces with the
ModelHub engine. The API handles inference and
provides convenience functionalities for access to
model configurations and files. A RESTful web
API encapsulates the ​Python ​API and allows for
interactions with packaged models through HTTP.
As such, it is powered by a ​Flask server running
within the container. Table 1 illustrates some
examples of the RESTful API endpoints. Both
Python ​and RESTful API documentation can be
found online . 6

Endpoint Method Returns

/get_config GET model configuration including metadata,
manuscript information, model
input/output formats and dimensions

/get_legal GET model and sample data license
information

/get_model_files GET zip folder containing model and
associated files

/get_samples GET urls to sample data

/predict_sample GET inference result on sample data

/predict GET
POST

inference result on input provided
through url (GET) or upload (POST),
model metadata, processing time

Table 1.​ Examples of endpoints implemented in the RESTful API. With the

exception of /get_model_files, all endpoints return a json response.
Information pertaining to sample data is only available if provided by

contributor.
In terms of I/O, inputs are managed by the

aforementioned ​loader ​class while ensuring the
input adheres to file formats and dimensions
predetermined by the contributor. Similarly, outputs

6 https://modelhub.readthedocs.io/en/latest/modelhubapi.html

https://paperpile.com/c/rHFUWn/FhAGW

are preassigned a type (Fig. 3) and can hence be
handled appropriately within other applications
interfacing with the ModelHub API. All outputs are
returned within json responses. For output types
that are not json serializable, a url to an HDF5 7

(.h5) file is returned. The HDF5 format allows for
the attachment of named attributes to data (e.g.,
free-form text description of outputs) and enhances
cross-compatibility (e.g., there are HDF5
implementations for .NET and JavaScript 8 9

applications).

Fig. 3. ​Predefined inference output types enable appropriate handling of data

in applications interfacing with the ModelHub API.

C. Template
The template (Fig. 1, green) is the

contributor-facing component of ModelHub.
Templates are to be populated by model source
files. At the outset, a ​dockerfile ​is to be provided as
part of the template for building the model runtime
environment (Fig. 2, ​model image​). The minimum
requirements (Fig. 1, dark green) for a valid
contribution to the ModelHub model registry
comprise the following: a pretrained model file
containing both architecture and weights together
with license information, ​Python functions for
loading and inferring on given inputs, and finally a

7 https://www.hdfgroup.org/solutions/hdf5/
8 http://hdf5.net/
9 https://www.npmjs.com/package/hdf5

pre-structured JSON configuration file that contains
a unique identifier, model provenance and
associated manuscript metadata, as well as I/O
format requirements. The configuration file schema
can be found online . Other optional components 10

within the template (Fig. 1, light green) include
functions for pre- and post-processing of data
before and after inference respectively, as well as
sample data with associated license information.
Documentation for contributing models to the
ModelHub registry can be found online . 11

III. U​SAGE

The ModelHub infrastructure relies on
researchers either commiting new models to the
ModelHub registry (contributors) or consuming
existing models (users). Given this
community-driven aspect, a user-centric approach
has been employed in the design of both the model
contribution and consumption pipelines.

Fig. 4.​ Model contribution pipeline.

A. For Contributors
The model contribution pipeline (Fig. 4)

commences with the packaging of model source
files through creating a ​Docker ​runtime
environment and populating the model template.
Model source files are housed in individual
repositories. As such, they may be independently
versioned, hosted on any web-based version control
platform where ownership is preserved, as well as

10 https://github.com/modelhub-ai/modelhub/blob/master/config_schema.json
11 https://modelhub.readthedocs.io/en/latest/contribute.html

used in a standalone fashion independent of the
ModelHub framework or with other model
dissemination platforms. The following step
involves running ModelHub integration tests that
ensure the contribution adheres to specific
standards, and API calls return expected results.
Finally, contributions are added to the ModelHub
registry by reference to the model repository, and
made available for consumption after review by the
ModelHub core team.

B. For Users
Users looking to consume models will begin at

the ModelHub model registry. The current registry
hosts a diverse set of models built in various deep
learning frameworks with different I/O formats,
performing tasks ranging from ImageNet image
classification to facial detection and emotion
recognition models, in addition to survival
prediction and organ segmentation models in
medical images (Supplementary Table 1). A web
application showcasing the entire model registry 12

has been developed as part of the ModelHub
infrastructure. It allows users to browse and search
models, as well as view their metadata and
associated manuscripts. Users may also test-drive
models directly in the browser by running inference
on provided samples or uploaded inputs.
Additionally, the web application utilizes ​Netron , 13

a web-based model viewer for visualizing
computational graphs in multiple formats. This
enables comparing and contrasting architectures
across models.

Once a model of interest is identified, the single
dependency for consuming ModelHub models
includes the one-time installation of ​Python 2.7 or
3.6​, ​Docker, ​and the ModelHub Python ​package . 14

Accessed through a command line, the ModelHub

12 http://app.modelhub.ai/
13 https://github.com/lutzroeder/netron
14 https://pypi.org/project/modelhub-ai/

Python ​package allows users to select a model from
the ModelHub registry and run it locally. Given the
model name, the package handles downloading the
corresponding ​Docker image (Fig. 2, ​ModelHub
image​) and running it as a container whilst
mounting the respective populated model template.
In addition to providing convenience functionalities
including the ability to mount local data and modify
port mappings, the package offers two modes of
interacting with the model. The first mode is
through the RESTful API by means of the ​Flask
application, and is more suited for out-of-the-box
benchmarking and deployment i.e., for users
without much interest in the mechanics of the
contributed model. The second mode utilizes the
Python API which can be accessed through a
sandboxed ​jupyter notebook provided as part of the
model template. This enables more flexibility in
modifying or implementing custom pre- or
post-processing functions, as well as running batch
inference. Alternatively, more advanced users may
freely explore the container and its contents through
the ​Docker's ​interactive bash shell. The ModelHub
documentation can be found online . 15

IV.C​ASE​ S​TUDIES
To demonstrate the utility of ModelHub in

benchmarking models trained on specific prediction
tasks, we perform two case studies. In the first case
study, we package 9 ImageNet classification
models into the ModelHub template and add them
to the registry. We benchmark these models (Table
2) on the ImageNet validation set (n=50K),
showcasing how the standard ​Python ​API can be 16

used to compare models built on different deep
learning frameworks (Supplementary Table 1)
while achieving accuracies comparable to those
reported in the original studies. In the second case
study, we packaged 3 medical image segmentation

15 https://modelhub.readthedocs.io/en/latest/
16 https://github.com/modelhub-ai/imagenet-benchmark

models ​[13–15] submitted to the 2018 International
Multimodal Brain Tumor Segmentation (BraTS)
challenge ​[10,16,17]​. By benchmarking these
models on the BraTS 2018 test set (n=191) (Fig. 5),
we showcase the utility of the ModelHub template
in soliciting standardized submissions to machine
learning competitions, while easing the burden of
curation and evaluation on organizers.

Model Name Implemented Accuracy Reported Accuracy

top-1 top-5 top-1 top-5

xception ​[18] 78.1 94.1 79.0 94.5

inception-v3 ​[19] 76.7 93.3 78.8 94.4

densenet ​[20] 76.6 93.4 76.2 93.2

resnet-50 ​[21] 75.0 92.3 77.2 93.3

vgg-19 ​[22] 73.7 91.5 74.5 92.0

mobilenet ​[23] 70.9 89.9 72.0 n/a

googlenet ​[24] 68.0 88.5 n/a 93.3

squeezenet ​[25] 56.0 78.9 57.5 80.3

alexnet ​[26] 55.8 79.1 57.2 80.3

Table 2​ Benchmarking results on 9 models from the ImageNet Large Scale
Visual Recognition Challenge, and packaged into the ModelHub template.

V. D​ISCUSSION

In this study, we present ModelHub, a
publishing platform for the structured dissemination
of pre-trained deep learning models. Contributions
by the research community result in containerized
standalone units that can be executed
out-of-the-box. With an initial focus on inference, a
standard API allows integration into research
studies and other applications. As such, ModelHub
aims to lower the barriers to consuming published
models by eliminating much of the effort involved
in implementing them.

Fig. 5.​ Ranking for 3 brain tumor segmentation models as part of the BraTS
challenge - smaller values are higher ranks (left) and resultant contours on a

test case (right)

A. Related Work
Multiple efforts have proposed solutions to

facilitate the sharing of domain-specific deep
learning models. Examples of these include Kipoi
[27]​, a repository of machine learning models
developed for genomic applications, DeepInfer
[28]​, a deep learning deployment toolkit for
image-guided therapy within 3D Slicer ​[29]​, the
Cancer imaging Phenomics Toolkit (CaPTk) ​[30]​,
which allows the incorporation of binarized deep
learning algorithms for inference, TOMAAT ​[31]​, a
cloud deployment infrastructure for models trained
on volumetric medical images, as well as the
deployment capabilities of NVIDIA Clara , a 17

machine learning framework for medical imaging
workflows. ModelHub is domain-agnostic,
promoting transfer learning [30], the inter-domain
utilization of containerized pretrained models for
many studies with insufficient training data [31].
Other efforts include the ​Caffe model zoo , 18

17 https://docs.nvidia.com/clara/
18 http://caffe.berkeleyvision.org/model_zoo.html

https://paperpile.com/c/rHFUWn/JwV3I+V7OGv+kj5MZ
https://paperpile.com/c/rHFUWn/uNOr+vPd4+kXRI
https://paperpile.com/c/rHFUWn/2JbrF
https://paperpile.com/c/rHFUWn/Wj06B
https://paperpile.com/c/rHFUWn/vgD6G
https://paperpile.com/c/rHFUWn/2rsNL
https://paperpile.com/c/rHFUWn/zlK6t
https://paperpile.com/c/rHFUWn/Q8CLP
https://paperpile.com/c/rHFUWn/gqPQD
https://paperpile.com/c/rHFUWn/JcA2A
https://paperpile.com/c/rHFUWn/QMNEU
https://paperpile.com/c/rHFUWn/JTGca
https://paperpile.com/c/rHFUWn/w4X9m
https://paperpile.com/c/rHFUWn/2gqf6
https://paperpile.com/c/rHFUWn/CUI4
https://paperpile.com/c/rHFUWn/MKhem

Tensorflow model repository and DLHub ​[32]​, as 19

well as the ​MXNet model zoo for the sharing of 20

Caffe ​[33]​, ​Tensorflow​/​Keras ​[34]​, and ​MXNet ​[35]
models respectively. In addition to
framework-specific model formats, contributions to
these repositories also feature framework-specific
pre- and post-processing pipelines. ModelHub's
framework-agnostic design allows researchers to
continue utilizing their preferred frameworks. This
also bypasses issues regarding the cross-framework
interoperability and conversion of models.
Modelhub also supports open-source formats aimed
at the general representation of deep learning
graphs, including the neural network exchange
format (NNEF) ​[36] and the open neural network
exchange format (ONNX) . 21

By utilizing containers for packaging models,
ModelHub builds upon a large body of work that
employs containers in scientific research as a
portability and reproducibility mechanism. This
trend has motivated the development of specialized
container infrastructures including ​Singularity ​[37]​,
designed to integrate with scientific computational
resources such as High Performance Computing
(HPC) clusters. Containers facilitate model
consumption as familiarity with the underlying
deep learning framework and its mechanics is not
required. Despite requiring curated contributions
within the containers, ModelHub features a
lightweight model template that is written in
Python​, simple enough to navigate, populate, and
extend.

B. Limitations
Several limitations should also be noted. By

design, ModelHub only supports inference.
Reproducing training pipelines requires knowledge
of model hyperparameters, access to training data

19 https://github.com/tensorflow/models
20 https://mxnet.apache.org/model_zoo/index.html
21 http://onnx.ai/

and associated curation code, controlled model
initializations, as well as training runtime
environments. In considering trained models as the
ultimate research output, the ModelHub template is
not designed for experimentation, but rather for
packaging, documenting, and distributing models at
the conclusion of studies in consistency with the
FAIR principles ​[11]​. Nonetheless, we anticipate
future releases of ModelHub to include
hyperparameter configurations, as well as
provisions for sharing training code. Another
limitation stems from the dependency on ​Docker
that might require extra familiarization effort from
novice users, in addition to security concerns as
running ​Docker requires users to have root
privileges. However, the rising ubiquity of
cloud-based applications and software
containerization practices in both research and
industry, as well as the push towards open industry
standards around container formats and runtime , 22

both promise widespread adoption.

C. Improvements
Future improvements include expanding the

model registry in both breadth (variety of domains
and data types) and depth (number of
contributions), as well as providing support for
more input and output data types. Such growth will
enable future meta analysis of models where the
evolution of model design (e.g., architectures,
activation functions, regularizers) over time and
across domains can be studied. The contribution
process is also to be simplified through continuous
integration tests and model registry updates,
together with enabling model contribution entirely
through a web browser. While ModelHub provides
APIs for interacting with models, the serving of
said models is self-service where users are required
to operate and manage their deployment locally or

22 https://www.opencontainers.org/

https://paperpile.com/c/rHFUWn/YG9fQ
https://paperpile.com/c/rHFUWn/Wytoe
https://paperpile.com/c/rHFUWn/E9gq7
https://paperpile.com/c/rHFUWn/eLgux
https://paperpile.com/c/rHFUWn/JoYhv
https://paperpile.com/c/rHFUWn/pCulN
https://paperpile.com/c/rHFUWn/xpEi

on cloud infrastructure. Provisions for fully hosted
services are in place and may be utilized in future
releases, similar to those offered through
Tensorflow serving ​[38] and ​clipper ​[39]​. This will
involve the integration of user authentication,
load-balancing, auto-healing, and other features
needed for serving models at scale. As the current
versioning of model source files is handled by ​Git​,
future improvements also include model-specific
versioning as proposed by recent deep learning
model lifecycle management systems ​[40]​. Finally,
we aim to assign a digital object identifier (DOI)
[41] to each contribution. As such, models can be
identified, cited, and exchanged as intellectual
scholarly articles.

VI.C​ONCLUSION

Ensuring accurate and complete dissemination
of AI research outputs promises to pave a path
towards achieving general AI from the cumulative
knowledge gained through the disparate
task-specific narrow AI studies conducted today. As
many studies remain at the proof-of-concept stage
and may lack arguments to demonstrate
effectiveness ​[42]​, an accurate measure of
generalizability and progress in the field may be
gauged through the continuous benchmarking of
new efforts against existing studies. Nevertheless,
one crucial component remains towards effective
dissemination: authors being conscientious and
willing to invest time and effort in achieving it.
Ultimately, it is the unequivocal communication of
ideas, code, and data that will bring much needed
transparency to computational research
experiments, and science en masse.

A​CKNOWLEDGMENTS

Authors acknowledge financial support from the National Institute of Health
(NIH:U24CA194354, NIH:U01CA190234, NIH/NCI/ITCR:U01CA242871,
NIH/NCI/ITCR:U24CA189523)​.

A​UTHOR​ C​ONTRIBUTIONS
AH, MS, CB, AF, HJWLA - ModelHub core team
EPO, MT - sfm-learner-pose model
PVT - cardiac-fcn model
LW - lfb-rwth-brats model
FI, KHMH - mic-dkfz-brats model
RM - deepscan-brats model
MTL, UH - cxr-prognosis model
BM, SB - BRATS team

R​EFERENCES

1. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep
Learning for Computer Vision: A Brief Review. Comput Intell Neurosci.
2018;2018: 7068349.

2. Young T, Hazarika D, Poria S, Cambria E. Recent Trends in Deep
Learning Based Natural Language Processing [Review Article]. IEEE
Comput Intell Mag. 2018;13: 55–75.

3. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL.
Artificial intelligence in radiology. Nat Rev Cancer. 2018.
doi:​10.1038/s41568-018-0016-5

4. Hutson M. Artificial intelligence faces reproducibility crisis. Science.
2018;359: 725–726.

5. Gundersen OE, Kjensmo S. State of the art: Reproducibility in artificial
intelligence. Thirty-Second AAAI Conference on Artificial Intelligence.
2018. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17
248

6. Olorisade BK, Brereton P, Andras P. Reproducibility in Machine
Learning-Based Studies: An Example of Text Mining. 2017. Available:
https://openreview.net/pdf?id=By4l2PbQ-

7. Mieskes M. A quantitative study of data in the nlp community.
Proceedings of the First ACL Workshop on Ethics in Natural Language
Processing. 2017. pp. 23–29.

8. Sethi A, Sankaran A, Panwar N, Khare S, Mani S. DLPaper2Code:
Auto-generation of code from deep learning research papers.
Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17
100

9. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A
large-scale hierarchical image database. 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 2009. pp. 248–255.

10. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al.
Identifying the Best Machine Learning Algorithms for Brain Tumor
Segmentation, Progression Assessment, and Overall Survival Prediction
in the BRATS Challenge. arXiv [cs.CV]. 2018. Available:
http://arxiv.org/abs/1811.02629

11. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M,
Baak A, et al. The FAIR Guiding Principles for scientific data
management and stewardship. Sci Data. 2016;3: 160018.

12. Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The Design of

https://paperpile.com/c/rHFUWn/kOMjI
https://paperpile.com/c/rHFUWn/lDVEa
https://paperpile.com/c/rHFUWn/Cv2bH
https://paperpile.com/c/rHFUWn/RFU9X
https://paperpile.com/c/rHFUWn/zlLxC
http://paperpile.com/b/rHFUWn/NCNpz
http://paperpile.com/b/rHFUWn/NCNpz
http://paperpile.com/b/rHFUWn/NCNpz
http://paperpile.com/b/rHFUWn/gW9Ti
http://paperpile.com/b/rHFUWn/gW9Ti
http://paperpile.com/b/rHFUWn/gW9Ti
http://paperpile.com/b/rHFUWn/bs4ND
http://paperpile.com/b/rHFUWn/bs4ND
http://paperpile.com/b/rHFUWn/bs4ND
http://dx.doi.org/10.1038/s41568-018-0016-5
http://paperpile.com/b/rHFUWn/sRD15
http://paperpile.com/b/rHFUWn/sRD15
http://paperpile.com/b/rHFUWn/f2Ozl
http://paperpile.com/b/rHFUWn/f2Ozl
http://paperpile.com/b/rHFUWn/f2Ozl
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17248
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17248
http://paperpile.com/b/rHFUWn/BEmr6
http://paperpile.com/b/rHFUWn/BEmr6
https://openreview.net/pdf?id=By4l2PbQ-
http://paperpile.com/b/rHFUWn/N9Fcq
http://paperpile.com/b/rHFUWn/N9Fcq
http://paperpile.com/b/rHFUWn/N9Fcq
http://paperpile.com/b/rHFUWn/BWS1b
http://paperpile.com/b/rHFUWn/BWS1b
http://paperpile.com/b/rHFUWn/BWS1b
http://paperpile.com/b/rHFUWn/BWS1b
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17100
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17100
http://paperpile.com/b/rHFUWn/zQsK
http://paperpile.com/b/rHFUWn/zQsK
http://paperpile.com/b/rHFUWn/zQsK
http://paperpile.com/b/rHFUWn/uNOr
http://paperpile.com/b/rHFUWn/uNOr
http://paperpile.com/b/rHFUWn/uNOr
http://paperpile.com/b/rHFUWn/uNOr
http://arxiv.org/abs/1811.02629
http://paperpile.com/b/rHFUWn/xpEi
http://paperpile.com/b/rHFUWn/xpEi
http://paperpile.com/b/rHFUWn/xpEi
http://paperpile.com/b/rHFUWn/FhAGW

SimpleITK. Front Neuroinform. 2013;7: 45.

13. Weninger L, Rippel O, Koppers S, Merhof D. Segmentation of Brain
Tumors and Patient Survival Prediction: Methods for the BraTS 2018
Challenge. Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries. Springer International Publishing; 2019. pp.
3–12.

14. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. No
New-Net. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries. Springer International Publishing; 2019. pp. 234–244.

15. McKinley R, Meier R, Wiest R. Ensembles of Densely-Connected CNNs
with Label-Uncertainty for Brain Tumor Segmentation. Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.
Springer International Publishing; 2019. pp. 456–465.

16. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J,
et al. The Multimodal Brain Tumor Image Segmentation Benchmark
(BRATS). IEEE Trans Med Imaging. 2015;34: 1993–2024.

17. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, et al.
Advancing The Cancer Genome Atlas glioma MRI collections with
expert segmentation labels and radiomic features. Scientific Data. 2017.
doi:​10.1038/sdata.2017.117

18. Chollet F. Xception: Deep learning with depthwise separable
convolutions. Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017. pp. 1251–1258.

19. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the
inception architecture for computer vision. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016. pp.
2818–2826.

20. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017. pp. 4700–4708.

21. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016. pp. 770–778.

22. Simonyan K, Zisserman A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv [cs.CV]. 2014. Available:
http://arxiv.org/abs/1409.1556

23. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2:
Inverted residuals and linear bottlenecks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018. pp.
4510–4520.

24. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going
deeper with convolutions. Cvpr; 2015. Available:
http://openaccess.thecvf.com/CVPR2015.py

25. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<
0.5 MB model size. arXiv preprint arXiv:1602 07360. 2016. Available:
https://arxiv.org/abs/1602.07360

26. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou
L, Weinberger KQ, editors. Advances in Neural Information Processing
Systems 25. Curran Associates, Inc.; 2012. pp. 1097–1105.

27. Avsec Z, Kreuzhuber R, Israeli J, Xu N, Cheng J, Shrikumar A, et al.
Kipoi: accelerating the community exchange and reuse of predictive
models for genomics. bioRxiv. 2018. p. 375345. doi:​10.1101/375345

28. Mehrtash A, Pesteie M, Hetherington J, Behringer PA, Kapur T, Wells
WM 3rd, et al. DeepInfer: Open-Source Deep Learning Deployment

Toolkit for Image-Guided Therapy. Proc SPIE Int Soc Opt Eng.
2017;10135. doi:​10.1117/12.2256011

29. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C,
Pujol S, et al. 3D Slicer as an image computing platform for the
Quantitative Imaging Network. Magn Reson Imaging. 2012;30:
1323–1341.

30. Davatzikos C, Rathore S, Bakas S, Pati S, Bergman M, Kalarot R, et al.
Cancer imaging phenomics toolkit: quantitative imaging analytics for
precision diagnostics and predictive modeling of clinical outcome. J Med
Imaging (Bellingham). 2018;5: 011018.

31. Milletari F, Frei J, Aboulatta M, Vivar G, Ahmadi S-A. Cloud
deployment of high-resolution medical image analysis with TOMAAT.
IEEE J Biomed Health Inform. 2018. doi:​10.1109/JBHI.2018.2885214

32. Chard R, Li Z, Chard K, Ward L, Babuji Y, Woodard A, et al. DLHub:
Model and Data Serving for Science. arXiv [cs.LG]. 2018. Available:
http://arxiv.org/abs/1811.11213

33. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al.
Caffe: Convolutional Architecture for Fast Feature Embedding.
Proceedings of the 22Nd ACM International Conference on Multimedia.
New York, NY, USA: ACM; 2014. pp. 675–678.

34. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.
TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv [cs.DC]. 2016. Available:
http://arxiv.org/abs/1603.04467

35. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, et al. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed
Systems. arXiv [cs.DC]. 2015. Available:
http://arxiv.org/abs/1512.01274

36. Seo B, Shin M, Mo YJ, Kim J. Top-down parsing for Neural Network
Exchange Format (NNEF) in TensorFlow-based deep learning
computation. 2018 International Conference on Information Networking
(ICOIN). 2018. pp. 522–524.

37. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for
mobility of compute. PLoS One. 2017;12: e0177459.

38. Olston C, Fiedel N, Gorovoy K, Harmsen J, Lao L, Li F, et al.
TensorFlow-Serving: Flexible, High-Performance ML Serving. arXiv
[cs.DC]. 2017. Available: ​http://arxiv.org/abs/1712.06139

39. Crankshaw D, Wang X, Zhou G, Franklin MJ, Gonzalez JE, Stoica I.
Clipper: A low-latency online prediction serving system. 14th
${USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI}$ 17). 2017. pp. 613–627.

40. Miao H, Li A, Davis LS, Deshpande A. ModelHub: Towards Unified
Data and Lifecycle Management for Deep Learning. arXiv [cs.DB].
2016. Available: ​http://arxiv.org/abs/1611.06224

41. Chandrakar R. Digital object identifier system: an overview. The
Electronic Library. 2006;24: 445–452.

42. Király FJ, Mateen B, Sonabend R. NIPS - Not Even Wrong? A
Systematic Review of Empirically Complete Demonstrations of
Algorithmic Effectiveness in the Machine Learning and Artificial
Intelligence Literature. arXiv [cs.LG]. 2018. Available:
http://arxiv.org/abs/1812.07519

43. Barsoum E, Zhang C, Ferrer CC, Zhang Z. Training deep networks for
facial expression recognition with crowd-sourced label distribution.
Proceedings of the 18th ACM. 2016. Available:
https://dl.acm.org/citation.cfm?id=2993165

44. Tran PV. A fully convolutional neural network for cardiac segmentation

http://paperpile.com/b/rHFUWn/FhAGW
http://paperpile.com/b/rHFUWn/JwV3I
http://paperpile.com/b/rHFUWn/JwV3I
http://paperpile.com/b/rHFUWn/JwV3I
http://paperpile.com/b/rHFUWn/JwV3I
http://paperpile.com/b/rHFUWn/JwV3I
http://paperpile.com/b/rHFUWn/V7OGv
http://paperpile.com/b/rHFUWn/V7OGv
http://paperpile.com/b/rHFUWn/V7OGv
http://paperpile.com/b/rHFUWn/kj5MZ
http://paperpile.com/b/rHFUWn/kj5MZ
http://paperpile.com/b/rHFUWn/kj5MZ
http://paperpile.com/b/rHFUWn/kj5MZ
http://paperpile.com/b/rHFUWn/vPd4
http://paperpile.com/b/rHFUWn/vPd4
http://paperpile.com/b/rHFUWn/vPd4
http://paperpile.com/b/rHFUWn/kXRI
http://paperpile.com/b/rHFUWn/kXRI
http://paperpile.com/b/rHFUWn/kXRI
http://paperpile.com/b/rHFUWn/kXRI
http://dx.doi.org/10.1038/sdata.2017.117
http://paperpile.com/b/rHFUWn/2JbrF
http://paperpile.com/b/rHFUWn/2JbrF
http://paperpile.com/b/rHFUWn/2JbrF
http://paperpile.com/b/rHFUWn/Wj06B
http://paperpile.com/b/rHFUWn/Wj06B
http://paperpile.com/b/rHFUWn/Wj06B
http://paperpile.com/b/rHFUWn/Wj06B
http://paperpile.com/b/rHFUWn/vgD6G
http://paperpile.com/b/rHFUWn/vgD6G
http://paperpile.com/b/rHFUWn/vgD6G
http://paperpile.com/b/rHFUWn/2rsNL
http://paperpile.com/b/rHFUWn/2rsNL
http://paperpile.com/b/rHFUWn/2rsNL
http://paperpile.com/b/rHFUWn/zlK6t
http://paperpile.com/b/rHFUWn/zlK6t
http://arxiv.org/abs/1409.1556
http://paperpile.com/b/rHFUWn/Q8CLP
http://paperpile.com/b/rHFUWn/Q8CLP
http://paperpile.com/b/rHFUWn/Q8CLP
http://paperpile.com/b/rHFUWn/Q8CLP
http://paperpile.com/b/rHFUWn/gqPQD
http://paperpile.com/b/rHFUWn/gqPQD
http://openaccess.thecvf.com/CVPR2015.py
http://paperpile.com/b/rHFUWn/JcA2A
http://paperpile.com/b/rHFUWn/JcA2A
http://paperpile.com/b/rHFUWn/JcA2A
https://arxiv.org/abs/1602.07360
http://paperpile.com/b/rHFUWn/QMNEU
http://paperpile.com/b/rHFUWn/QMNEU
http://paperpile.com/b/rHFUWn/QMNEU
http://paperpile.com/b/rHFUWn/QMNEU
http://paperpile.com/b/rHFUWn/JTGca
http://paperpile.com/b/rHFUWn/JTGca
http://paperpile.com/b/rHFUWn/JTGca
http://dx.doi.org/10.1101/375345
http://paperpile.com/b/rHFUWn/w4X9m
http://paperpile.com/b/rHFUWn/w4X9m
http://paperpile.com/b/rHFUWn/w4X9m
http://paperpile.com/b/rHFUWn/w4X9m
http://dx.doi.org/10.1117/12.2256011
http://paperpile.com/b/rHFUWn/2gqf6
http://paperpile.com/b/rHFUWn/2gqf6
http://paperpile.com/b/rHFUWn/2gqf6
http://paperpile.com/b/rHFUWn/2gqf6
http://paperpile.com/b/rHFUWn/CUI4
http://paperpile.com/b/rHFUWn/CUI4
http://paperpile.com/b/rHFUWn/CUI4
http://paperpile.com/b/rHFUWn/CUI4
http://paperpile.com/b/rHFUWn/MKhem
http://paperpile.com/b/rHFUWn/MKhem
http://paperpile.com/b/rHFUWn/MKhem
http://dx.doi.org/10.1109/JBHI.2018.2885214
http://paperpile.com/b/rHFUWn/YG9fQ
http://paperpile.com/b/rHFUWn/YG9fQ
http://arxiv.org/abs/1811.11213
http://paperpile.com/b/rHFUWn/Wytoe
http://paperpile.com/b/rHFUWn/Wytoe
http://paperpile.com/b/rHFUWn/Wytoe
http://paperpile.com/b/rHFUWn/Wytoe
http://paperpile.com/b/rHFUWn/E9gq7
http://paperpile.com/b/rHFUWn/E9gq7
http://paperpile.com/b/rHFUWn/E9gq7
http://arxiv.org/abs/1603.04467
http://paperpile.com/b/rHFUWn/eLgux
http://paperpile.com/b/rHFUWn/eLgux
http://paperpile.com/b/rHFUWn/eLgux
http://arxiv.org/abs/1512.01274
http://paperpile.com/b/rHFUWn/JoYhv
http://paperpile.com/b/rHFUWn/JoYhv
http://paperpile.com/b/rHFUWn/JoYhv
http://paperpile.com/b/rHFUWn/JoYhv
http://paperpile.com/b/rHFUWn/pCulN
http://paperpile.com/b/rHFUWn/pCulN
http://paperpile.com/b/rHFUWn/kOMjI
http://paperpile.com/b/rHFUWn/kOMjI
http://paperpile.com/b/rHFUWn/kOMjI
http://arxiv.org/abs/1712.06139
http://paperpile.com/b/rHFUWn/lDVEa
http://paperpile.com/b/rHFUWn/lDVEa
http://paperpile.com/b/rHFUWn/lDVEa
http://paperpile.com/b/rHFUWn/lDVEa
http://paperpile.com/b/rHFUWn/Cv2bH
http://paperpile.com/b/rHFUWn/Cv2bH
http://paperpile.com/b/rHFUWn/Cv2bH
http://arxiv.org/abs/1611.06224
http://paperpile.com/b/rHFUWn/RFU9X
http://paperpile.com/b/rHFUWn/RFU9X
http://paperpile.com/b/rHFUWn/zlLxC
http://paperpile.com/b/rHFUWn/zlLxC
http://paperpile.com/b/rHFUWn/zlLxC
http://paperpile.com/b/rHFUWn/zlLxC
http://arxiv.org/abs/1812.07519
http://paperpile.com/b/rHFUWn/6nE1z
http://paperpile.com/b/rHFUWn/6nE1z
http://paperpile.com/b/rHFUWn/6nE1z
https://dl.acm.org/citation.cfm?id=2993165
http://paperpile.com/b/rHFUWn/1Dc4c

in short-axis MRI. arXiv preprint arXiv:160400494. 2016. Available:
http://arxiv.org/abs/1604.00494

45. Christ PF, Elshaer MEA, Ettlinger F, Tatavarty S, Bickel M, Bilic P, et
al. Automatic Liver and Lesion Segmentation in CT Using Cascaded
Fully Convolutional Neural Networks and 3D Conditional Random
Fields. Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2016. Springer International Publishing; 2016. pp. 415–423.

46. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et
al. Deep learning for lung cancer prognostication: A retrospective
multi-cohort radiomics study. PLoS Med. 2018;15: e1002711.

47. Turan M, Ornek EP, Ibrahimli N, Giracoglu C, Almalioglu Y, Yanik
MF, et al. Unsupervised Odometry and Depth Learning for Endoscopic
Capsule Robots. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018. doi:​10.1109/iros.2018.8593623

48. Deng J, Guo J, Xue N, Zafeiriou S. Arcface: Additive angular margin
loss for deep face recognition. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019. pp. 4690–4699.

49. Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, et al. Understanding
Convolution for Semantic Segmentation. 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). 2018. pp. 1451–1460.

50. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv
preprint arXiv:180402767. 2018. Available:
http://arxiv.org/abs/1804.02767

http://paperpile.com/b/rHFUWn/1Dc4c
http://arxiv.org/abs/1604.00494
http://paperpile.com/b/rHFUWn/5q4W2
http://paperpile.com/b/rHFUWn/5q4W2
http://paperpile.com/b/rHFUWn/5q4W2
http://paperpile.com/b/rHFUWn/5q4W2
http://paperpile.com/b/rHFUWn/5q4W2
http://paperpile.com/b/rHFUWn/UMd2g
http://paperpile.com/b/rHFUWn/UMd2g
http://paperpile.com/b/rHFUWn/UMd2g
http://paperpile.com/b/rHFUWn/7XfLp
http://paperpile.com/b/rHFUWn/7XfLp
http://paperpile.com/b/rHFUWn/7XfLp
http://paperpile.com/b/rHFUWn/7XfLp
http://dx.doi.org/10.1109/iros.2018.8593623
http://paperpile.com/b/rHFUWn/FTczq
http://paperpile.com/b/rHFUWn/FTczq
http://paperpile.com/b/rHFUWn/FTczq
http://paperpile.com/b/rHFUWn/yAapZ
http://paperpile.com/b/rHFUWn/yAapZ
http://paperpile.com/b/rHFUWn/yAapZ
http://paperpile.com/b/rHFUWn/jMzgI
http://paperpile.com/b/rHFUWn/jMzgI
http://arxiv.org/abs/1804.02767

S​UPPLEMENTARY​ M​ATERIAL

Model name Backend Model format Task I/O

squeezenet ​[25] mxnet .onnx ImageNet classification 2D image / probabilities

googlenet ​[24] caffe .caffemodel

inception-v3 ​[19] tensorflow/keras .h5

vgg-19 ​[22] mxnet .onnx

xception ​[18] tensorflow/keras .h5

alexnet ​[26] caffe .caffemodel

densenet ​[20] tensorflow
keras

.h5

resnet-50 ​[21] mxnet .onnx

mobilenet ​[23] mxnet .onnx

emotion-fer-plus ​[43] cntk .onnx Facial Expression Recognition 2D image / probabilities

cardiac-fcn ​[44] tensorflow/keras .h5 Segmenting the right ventricle in MRI DICOM / 2D mask

cascaded-fcn-liver ​[45] caffe .caffemodel Liver and liver lesion segmentation DICOM / 2D contour

deep-prognosis ​[46] tensorflow/keras .h5 Predict survival of lung cancer patients 3D array / probabilities

sfm-learner-pose ​[47] tensorflow .pb Unsupervised Pose & Depth Estimation 2D image / 1D vector

arc-face ​[48] mxnet .onnx Facial Detection & Recognition 2D image / 1D vector

duc-semantic ​[49] mxnet .onnx Semantic Segmentation 2D image / 2D segmentation map

yolo-v3 ​[50] tensorflow/keras .h5 Real-Time Object Detection 2D image / 3D array

lfb-rwth-brats ​[13] pytorch .pth Brain Tumor Segmentation on MRI multi NIfTI / 3D segmentation map

mic-dkfz-brats ​[14] pytorch .model

deepscan-brats ​[15] pytorch .pth

Supplementary Table 1.​ Models currently included into the ModelHub registry, illustrating the various backends, model formats, tasks, and I/O formats
supported by ModelHub.

https://paperpile.com/c/rHFUWn/JcA2A
https://paperpile.com/c/rHFUWn/gqPQD
https://paperpile.com/c/rHFUWn/Wj06B
https://paperpile.com/c/rHFUWn/zlK6t
https://paperpile.com/c/rHFUWn/2JbrF
https://paperpile.com/c/rHFUWn/QMNEU
https://paperpile.com/c/rHFUWn/vgD6G
https://paperpile.com/c/rHFUWn/2rsNL
https://paperpile.com/c/rHFUWn/Q8CLP
https://paperpile.com/c/rHFUWn/6nE1z
https://paperpile.com/c/rHFUWn/1Dc4c
https://paperpile.com/c/rHFUWn/5q4W2
https://paperpile.com/c/rHFUWn/UMd2g
https://paperpile.com/c/rHFUWn/7XfLp
https://paperpile.com/c/rHFUWn/FTczq
https://paperpile.com/c/rHFUWn/yAapZ
https://paperpile.com/c/rHFUWn/jMzgI
https://paperpile.com/c/rHFUWn/JwV3I
https://paperpile.com/c/rHFUWn/V7OGv
https://paperpile.com/c/rHFUWn/kj5MZ

