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Abstract​— Recent advances in artificial intelligence research       
have led to a profusion of studies that apply deep learning to            
problems in image analysis and natural language processing        
among others. Additionally, the availability of open-source       
computational frameworks has lowered the barriers to       
implementing state-of-the-art methods across multiple domains.      
Albeit leading to major performance breakthroughs in some        
tasks, effective dissemination of deep learning algorithms       
remains challenging, inhibiting reproducibility and     
benchmarking studies, impeding further validation, and      
ultimately hindering their effectiveness in the cumulative       
scientific progress. In developing a platform for sharing research         
outputs, we present ModelHub.AI (www.modelhub.ai)​, a      
community-driven container-based software engine and platform      
for the structured dissemination of deep learning models. For         
contributors, the engine controls data flow throughout the        
inference cycle, while the contributor-facing standard template       
exposes model-specific functions including inference, as well as        
pre- and post-processing. Python and RESTful Application       
programming interfaces (APIs) enable users to interact with        
models hosted on ModelHub.AI and allows both researchers and         
developers to utilize models out-of-the-box. ModelHub.AI is       
domain-, data-, and framework-agnostic, catering to different       
workflows and contributors' preferences. 

Keywords​— ​Artificial Intelligence, Deep Learning, 
Dissemination, Container, Framework 

I. I​NTRODUCTION 

The generation of large amounts of data,       
availability of specialized computational hardware,     
as well as advancements in machine learning, have        
all led to the recent profusion of artificial        
intelligence (AI) applications in fields ranging from       
computer vision ​[1] and natural language      
processing ​[2] to radiology ​[3] and beyond.       
Moreover, the availability of over a dozen       
open-source deep learning computational    
frameworks have immensely lowered the barriers to       
entry and utilization, in addition to allowing       
state-of-the-art methods to be implemented in a few        
lines of code. Despite these reported successes and        
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widespread adoption, issues around the     
transparency and reproducibility of studies continue      
to hamper progress in AI research, and have been         
compared to those that have burdened medicine,       
psychology, and other fields over the past decade        
[4]​. In a 2018 survey of 400 AI studies, none have           
reported all the variables needed to reproduce the        
experiments, only 6% shared code, 30% shared test        
data, and 54% shared pseudocode ​[5]​. Another       
effort surveyed 30 text mining studies and reported        
that important explicit information regarding     
datasets, study parameters, randomization control,     
and software environments were lacking in most       
studies ​[6]​. Finally, and for studies that do share         
methods, ensuring its longevity and avoiding      
broken links to online resources is rather       
challenging: 18% of 704 natural language      
processing papers that did publish training data       
referenced links that were broken or deprecated       
within five years of publication ​[7]​. 

Shortcomings in the dissemination of AI      
research outputs are a result of multiple related        
factors. Unpublished or inadequately published     
code is perhaps the primary factor and may be a          
result of lack of resources, the heavy burden of         
distribution and maintenance, incomplete    
documentation, as well as intellectual property and       
licensing restrictions. The highly diverse landscape      
of frameworks used to perform deep learning       
studies is another contributing factor, making      
interoperability and cross-framework   
implementation rather challenging. Some of these      
frameworks exhibit fundamentally different    
computational graph definitions, including    
declarative "define-and-run" definitions for    
predefined static graphs, as well as imperative       
"define-by-run" graphs that are defined dynamically      
via computation. As a result, transitioning from one        
to the other comes with a steep learning curve given          
differences in variable declarations and debugging.      

Additionally, the development of deep learning      
frameworks is also highly volatile given their       
relatively recent debut. Popular frameworks (e.g.,      
Torch​, ​CNTK, and ​Theano​) ​are no longer under        
active major development, while once independent      
frameworks (e.g., ​Caffe2 and ​PyTorch​) have now       
merged into a single library. This volatility       
introduces uncertainty into the sharing of methods,       
and ultimately inhibits their utilization and      
implementation by the community. 

Despite these challenges, some authors -      
together with the wider open-source community -       
continue to share code and implement studies in an         
ad-hoc fashion. Although originally designed for      
software version control, repositories in web-based      
services (e.g., ​GitHub​) host many of these       
implementations. These repositories are relatively     
homogenous as they mainly comprise models for       
object localization and classification in     
photographic images as part of the ImageNet Large        
Scale Visual Recognition Challenge . Additionally,     1

given the lack of standardized formats and test        
cases, together with the wide range of       
documentation scope and breadth, proper execution      
of code from these repositories may require       
significant trial-and-error and ensuring    
completeness is thus often unattainable. Many deep       
learning frameworks host collections of working      
models often referred to as "model zoos". However,        
these are almost exclusively comprised of models       
from high profile studies only, are      
framework-specific by default, and occasionally     
lack documented pre- and post- processing      
pipelines where only the pretrained model is shared.        
As a last resort for studies that lack code         
implementations, some efforts have turned to      
automating information extraction from figures,     
diagrams, and tables in research manuscripts and       
converting these into abstract computational graphs      

1 http://www.image-net.org/challenges/LSVRC/ 
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[8]​. Finally, and while significant efforts have been        
aimed at curating data for public dissemination       
through machine learning competitions and     
challenges ​[9,10]​, no comparable efforts are being       
made in the inverse direction of making solutions -         
that have been developed using this data - publicly         
available. As such, a systematic ‘backward      
translation’ of models into research is much needed.  

In this study, we develop a medium for the         
sharing of deep learning research outputs, in line        
with the FAIR principles ​[11] and with a focus on          
transparency, reproducibility, and ease of both      
contribution and consumption. As a complement to       
scientific manuscripts, we present ModelHub.AI     
(further referred to as ModelHub), a      
community-driven software engine and template for      
the structured dissemination of deep learning      
models. For contributors, the ModelHub engine      
controls data flow throughout the inference cycle,       
as well as input loading and type casting        
out-of-the-box. The engine is also extensible      
allowing for processing multiple data types, making       
it both domain- and data-agnostic. On the other        
hand, the contributor-facing ModelHub template     
allows for focus on implementation-specific     
operations including inference and pre- and      
post-processing, and thereby reducing the effort and       
time required to share code. On the receiving end,         
users interact with models hosted on ModelHub       
through standard ​Python and RESTful application      
programming interfaces (APIs) that return     
information about a given model or inference on a         
given input. This facilitates direct integration into       
users' benchmarking routines and additional     
validation studies. ModelHub is also     
container-based. In addition to the added      
portability, this allows ModelHub to cater to       
different frameworks and preferences. ModelHub     
aims to be a repository of deep learning models         
with accompanying scientific manuscripts allowing     

for the pairing of these two distinctly different        
research dissemination media. Finally, ModelHub is      
open-source enabling more advanced users to      
further explore containerized models beyond the      
API, and giving contributors flexibility in choosing       
appropriate model sharing licenses. 

II. A​RCHITECTURE 
The ModelHub architecture (Fig. 1) comprises      

three main components: a containerization scheme      
for runtime environment control, an engine for data        
flow and processing, and a model-specific template       
provided by the respective contributors. 

 
Fig. 1. ​Overall ModelHub architecture illustrating the container (orange), 

engine (blue), and model template populated by contributors (green). 

A. Containerization and Runtime Environments 
ModelHub uses ​Docker containers (Fig. 1,      2

orange) for executing models, an industry standard       
for micro-service virtualization. ​Docker and other      
container infrastructures (e.g., ​rkt ) were originally      3

designed for application deployment. ModelHub     
utilizes a stacked ​Docker ​image configuration (Fig.       
2). Starting with a base operating system image, ​the         
model image is built to encompass the contributed        
model's runtime environment. This often includes      
the deep learning framework, as well as other ​Linux         
packages and ​Python libraries. The ​ModelHub      
image ​encompasses the ​model image and adds the        
ModelHub engine as well as its runtime       
environment. The deployment image is optional and       
allows for incorporating the model source for a        
fully contained image that can be directly deployed        

2 https://www.docker.com/ 
3 https://coreos.com/rkt/ 
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into container orchestration systems (e.g.,     
Kubernetes ). This stacked design features images      4

with gradually increasing volatility: images     
containing model runtime being less volatile and       
unlikely to change - and conversely the actively        
developed ModelHub engine being more volatile.      
As such, ModelHub engine and API updates can be         
backward compatible with existing models by      
simply rebuilding images. Finally, the decoupling      
of the contributed model runtime environment from       
its source files (​model image vs ​deployment image        
respectively) enables source files to be hosted and        
updated in an efficient and isolated manner, in        
addition to allowing the model runtime      
environment to be reused across multiple different       
models with identical requirements. 

 
Fig. 2.​ Stacked ​Docker​ image configuration allows for backwards 

compatibility and reusable images across models. 

B. ModelHub Engine 
The ModelHub engine (Fig. 1, blue) comprises       

4 main classes. The ​loader and ​converter classes        
handle the loading of input data and conversions to         
numpy arrays respectively. Separating these     
responsibilities allows for pre-processing of data in       
its native format, in array format, or in both as per           
the contributor's pipeline. The ​Python Imaging      
Library (PIL) and ​SimpleITK (a ​Python ​wrapper       5

for a subset of the ​Insight Segmentation and        
Registration Toolkit (ITK) functionality) ​[12] are      
two currently employed libraries. Future extensions      
and additional libraries are possible given the       
chain-of-responsibility pattern employed in the     
design. The third class is the ​model class where         

4 ​https://kubernetes.io/ 
5 https://github.com/python-pillow/Pillow 

model initialization, loading, and inference     
functions are housed. Finally, the ​processor class       
handles data flow throughout the entire inference       
cycle: loading, converting, pre-processing, and     
feeding data into the model, in addition to        
post-processing.  

Access to the model and its features is possible         
through a ​Python ​API that interfaces with the        
ModelHub engine. The API handles inference and       
provides convenience functionalities for access to      
model configurations and files. A RESTful web       
API encapsulates the ​Python ​API and allows for        
interactions with packaged models through HTTP.      
As such, it is powered by a ​Flask server running          
within the container. Table 1 illustrates some       
examples of the RESTful API endpoints. Both       
Python ​and RESTful API documentation can be       
found online . 6

 
Endpoint Method Returns 

/get_config GET model configuration including metadata, 
manuscript information, model 
input/output formats and dimensions 

/get_legal GET model and sample data license 
information 

/get_model_files GET zip folder containing model and 
associated files 

/get_samples GET urls to sample data  

/predict_sample GET inference result on sample data  

/predict GET 
POST 

inference result on input provided 
through url (GET) or upload (POST), 
model metadata, processing time 

 
Table 1.​ Examples of endpoints implemented in the RESTful API. With the 

exception of /get_model_files, all endpoints return a json response. 
Information pertaining to sample data is only available if provided by 

contributor. 
In terms of I/O, inputs are managed by the         

aforementioned ​loader ​class while ensuring the      
input adheres to file formats and dimensions       
predetermined by the contributor. Similarly, outputs      

6 https://modelhub.readthedocs.io/en/latest/modelhubapi.html 
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are preassigned a type (Fig. 3) and can hence be          
handled appropriately within other applications     
interfacing with the ModelHub API. All outputs are        
returned within json responses. For output types       
that are not json serializable, a url to an HDF5          7

(.h5) file is returned. The HDF5 format allows for         
the attachment of named attributes to data (e.g.,        
free-form text description of outputs) and enhances       
cross-compatibility (e.g., there are HDF5     
implementations for .NET and JavaScript     8 9

applications). 

 
Fig. 3. ​Predefined inference output types enable appropriate handling of data 

in applications interfacing with the ModelHub API. 

C. Template 
The template (Fig. 1, green) is the       

contributor-facing component of ModelHub.    
Templates are to be populated by model source        
files. At the outset, a ​dockerfile ​is to be provided as           
part of the template for building the model runtime         
environment (Fig. 2, ​model image​). The minimum       
requirements (Fig. 1, dark green) for a valid        
contribution to the ModelHub model registry      
comprise the following: a pretrained model file       
containing both architecture and weights together      
with license information, ​Python functions for      
loading and inferring on given inputs, and finally a         

7 https://www.hdfgroup.org/solutions/hdf5/ 
8 http://hdf5.net/ 
9 https://www.npmjs.com/package/hdf5 

pre-structured JSON configuration file that contains      
a unique identifier, model provenance and      
associated manuscript metadata, as well as I/O       
format requirements. The configuration file schema      
can be found online . Other optional components       10

within the template (Fig. 1, light green) include        
functions for pre- and post-processing of data       
before and after inference respectively, as well as        
sample data with associated license information.      
Documentation for contributing models to the      
ModelHub registry can be found online . 11

III. U​SAGE 

The ModelHub infrastructure relies on     
researchers either commiting new models to the       
ModelHub registry (contributors) or consuming     
existing models (users). Given this     
community-driven aspect, a user-centric approach     
has been employed in the design of both the model          
contribution and consumption pipelines. 

 
Fig. 4.​ Model contribution pipeline.  

A. For Contributors 
The model contribution pipeline (Fig. 4)      

commences with the packaging of model source       
files through creating a ​Docker ​runtime      
environment and populating the model template.      
Model source files are housed in individual       
repositories. As such, they may be independently       
versioned, hosted on any web-based version control       
platform where ownership is preserved, as well as        

10 https://github.com/modelhub-ai/modelhub/blob/master/config_schema.json 
11 https://modelhub.readthedocs.io/en/latest/contribute.html 



used in a standalone fashion independent of the        
ModelHub framework or with other model      
dissemination platforms. The following step     
involves running ModelHub integration tests that      
ensure the contribution adheres to specific      
standards, and API calls return expected results.       
Finally, contributions are added to the ModelHub       
registry by reference to the model repository, and        
made available for consumption after review by the        
ModelHub core team.  

B. For Users 
Users looking to consume models will begin at        

the ModelHub model registry. The current registry       
hosts a diverse set of models built in various deep          
learning frameworks with different I/O formats,      
performing tasks ranging from ImageNet image      
classification to facial detection and emotion      
recognition models, in addition to survival      
prediction and organ segmentation models in      
medical images (Supplementary Table 1). A web       
application showcasing the entire model registry      12

has been developed as part of the ModelHub        
infrastructure. It allows users to browse and search        
models, as well as view their metadata and        
associated manuscripts. Users may also test-drive      
models directly in the browser by running inference        
on provided samples or uploaded inputs.      
Additionally, the web application utilizes ​Netron ,      13

a web-based model viewer for visualizing      
computational graphs in multiple formats. This      
enables comparing and contrasting architectures     
across models. 

Once a model of interest is identified, the single         
dependency for consuming ModelHub models     
includes the one-time installation of ​Python 2.7 or        
3.6​, ​Docker, ​and the ModelHub Python ​package .       14

Accessed through a command line, the ModelHub       

12 http://app.modelhub.ai/ 
13 https://github.com/lutzroeder/netron 
14 https://pypi.org/project/modelhub-ai/ 

Python ​package allows users to select a model from         
the ModelHub registry and run it locally. Given the         
model name, the package handles downloading the       
corresponding ​Docker image (Fig. 2, ​ModelHub      
image​) and running it as a container whilst        
mounting the respective populated model template.      
In addition to providing convenience functionalities      
including the ability to mount local data and modify         
port mappings, the package offers two modes of        
interacting with the model. The first mode is        
through the RESTful API by means of the ​Flask         
application, and is more suited for out-of-the-box       
benchmarking and deployment i.e., for users      
without much interest in the mechanics of the        
contributed model. The second mode utilizes the       
Python API which can be accessed through a        
sandboxed ​jupyter notebook provided as part of the        
model template. This enables more flexibility in       
modifying or implementing custom pre- or      
post-processing functions, as well as running batch       
inference. Alternatively, more advanced users may      
freely explore the container and its contents through        
the ​Docker's ​interactive bash shell. The ModelHub       
documentation can be found online . 15

IV.C​ASE​ S​TUDIES 
To demonstrate the utility of ModelHub in       

benchmarking models trained on specific prediction      
tasks, we perform two case studies. In the first case          
study, we package 9 ImageNet classification      
models into the ModelHub template and add them        
to the registry. We benchmark these models (Table        
2) on the ImageNet validation set (n=50K),       
showcasing how the standard ​Python ​API can be        16

used to compare models built on different deep        
learning frameworks (Supplementary Table 1)     
while achieving accuracies comparable to those      
reported in the original studies. In the second case         
study, we packaged 3 medical image segmentation       

15 https://modelhub.readthedocs.io/en/latest/ 
16 https://github.com/modelhub-ai/imagenet-benchmark 



models ​[13–15] submitted to the 2018 International       
Multimodal Brain Tumor Segmentation (BraTS)     
challenge ​[10,16,17]​. By benchmarking these     
models on the BraTS 2018 test set (n=191) (Fig. 5),          
we showcase the utility of the ModelHub template        
in soliciting standardized submissions to machine      
learning competitions, while easing the burden of       
curation and evaluation on organizers. 

 
Model Name Implemented Accuracy Reported Accuracy 

top-1 top-5 top-1 top-5 

xception ​[18] 78.1 94.1 79.0 94.5 

inception-v3 ​[19] 76.7 93.3 78.8 94.4 

densenet ​[20] 76.6 93.4 76.2 93.2 

resnet-50 ​[21] 75.0 92.3 77.2 93.3 

vgg-19 ​[22] 73.7 91.5 74.5 92.0 

mobilenet ​[23] 70.9 89.9 72.0 n/a 

googlenet ​[24] 68.0 88.5 n/a 93.3 

squeezenet ​[25] 56.0 78.9 57.5 80.3 

alexnet ​[26] 55.8 79.1 57.2 80.3 

 
Table 2​  Benchmarking results on 9 models from the ImageNet Large Scale 
Visual Recognition Challenge, and packaged into the ModelHub template. 

V. D​ISCUSSION 

In this study, we present ModelHub, a       
publishing platform for the structured dissemination      
of pre-trained deep learning models. Contributions      
by the research community result in containerized       
standalone units that can be executed      
out-of-the-box. With an initial focus on inference, a        
standard API allows integration into research      
studies and other applications. As such, ModelHub       
aims to lower the barriers to consuming published        
models by eliminating much of the effort involved        
in implementing them.  

 
Fig. 5.​   Ranking for 3 brain tumor segmentation models as part of the BraTS 
challenge - smaller values are higher ranks (left) and resultant contours on a 

test case (right) 
 

A. Related Work 
Multiple efforts have proposed solutions to      

facilitate the sharing of domain-specific deep      
learning models. Examples of these include Kipoi       
[27]​, a repository of machine learning models       
developed for genomic applications, DeepInfer     
[28]​, a deep learning deployment toolkit for       
image-guided therapy within 3D Slicer ​[29]​, the       
Cancer imaging Phenomics Toolkit (CaPTk) ​[30]​,      
which allows the incorporation of binarized deep       
learning algorithms for inference, TOMAAT ​[31]​, a       
cloud deployment infrastructure for models trained      
on volumetric medical images, as well as the        
deployment capabilities of NVIDIA Clara , a      17

machine learning framework for medical imaging      
workflows. ModelHub is domain-agnostic,    
promoting transfer learning [30], the inter-domain      
utilization of containerized pretrained models for      
many studies with insufficient training data [31].       
Other efforts include the ​Caffe model zoo ,       18

17 https://docs.nvidia.com/clara/ 
18 http://caffe.berkeleyvision.org/model_zoo.html 
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Tensorflow model repository and DLHub ​[32]​, as       19

well as the ​MXNet model zoo for the sharing of          20

Caffe ​[33]​, ​Tensorflow​/​Keras ​[34]​, and ​MXNet ​[35]       
models respectively. In addition to     
framework-specific model formats, contributions to     
these repositories also feature framework-specific     
pre- and post-processing pipelines. ModelHub's     
framework-agnostic design allows researchers to     
continue utilizing their preferred frameworks. This      
also bypasses issues regarding the cross-framework      
interoperability and conversion of models.     
Modelhub also supports open-source formats aimed      
at the general representation of deep learning       
graphs, including the neural network exchange      
format (NNEF) ​[36] and the open neural network        
exchange format (ONNX) . 21

By utilizing containers for packaging models,      
ModelHub builds upon a large body of work that         
employs containers in scientific research as a       
portability and reproducibility mechanism. This     
trend has motivated the development of specialized       
container infrastructures including ​Singularity ​[37]​,     
designed to integrate with scientific computational      
resources such as High Performance Computing      
(HPC) clusters. Containers facilitate model     
consumption as familiarity with the underlying      
deep learning framework and its mechanics is not        
required. Despite requiring curated contributions     
within the containers, ModelHub features a      
lightweight model template that is written in       
Python​, simple enough to navigate, populate, and       
extend. 

B. Limitations 
Several limitations should also be noted. By       

design, ModelHub only supports inference.     
Reproducing training pipelines requires knowledge     
of model hyperparameters, access to training data       

19 https://github.com/tensorflow/models 
20 https://mxnet.apache.org/model_zoo/index.html 
21 http://onnx.ai/ 

and associated curation code, controlled model      
initializations, as well as training runtime      
environments. In considering trained models as the       
ultimate research output, the ModelHub template is       
not designed for experimentation, but rather for       
packaging, documenting, and distributing models at      
the conclusion of studies in consistency with the        
FAIR principles ​[11]​. Nonetheless, we anticipate      
future releases of ModelHub to include      
hyperparameter configurations, as well as     
provisions for sharing training code. Another      
limitation stems from the dependency on ​Docker       
that might require extra familiarization effort from       
novice users, in addition to security concerns as        
running ​Docker requires users to have root       
privileges. However, the rising ubiquity of      
cloud-based applications and software    
containerization practices in both research and      
industry, as well as the push towards open industry         
standards around container formats and runtime ,      22

both promise widespread adoption.  

C. Improvements 
Future improvements include expanding the     

model registry in both breadth (variety of domains        
and data types) and depth (number of       
contributions), as well as providing support for       
more input and output data types. Such growth will         
enable future meta analysis of models where the        
evolution of model design (e.g., architectures,      
activation functions, regularizers) over time and      
across domains can be studied. The contribution       
process is also to be simplified through continuous        
integration tests and model registry updates,      
together with enabling model contribution entirely      
through a web browser. While ModelHub provides       
APIs for interacting with models, the serving of        
said models is self-service where users are required        
to operate and manage their deployment locally or        

22 https://www.opencontainers.org/ 
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on cloud infrastructure. Provisions for fully hosted       
services are in place and may be utilized in future          
releases, similar to those offered through      
Tensorflow serving ​[38] and ​clipper ​[39]​. This will        
involve the integration of user authentication,      
load-balancing, auto-healing, and other features     
needed for serving models at scale. As the current         
versioning of model source files is handled by ​Git​,         
future improvements also include model-specific     
versioning as proposed by recent deep learning       
model lifecycle management systems ​[40]​. Finally,      
we aim to assign a digital object identifier (DOI)         
[41] to each contribution. As such, models can be         
identified, cited, and exchanged as intellectual      
scholarly articles. 

VI.C​ONCLUSION 

Ensuring accurate and complete dissemination     
of AI research outputs promises to pave a path         
towards achieving general AI from the cumulative       
knowledge gained through the disparate     
task-specific narrow AI studies conducted today. As       
many studies remain at the proof-of-concept stage       
and may lack arguments to demonstrate      
effectiveness ​[42]​, an accurate measure of      
generalizability and progress in the field may be        
gauged through the continuous benchmarking of      
new efforts against existing studies. Nevertheless,      
one crucial component remains towards effective      
dissemination: authors being conscientious and     
willing to invest time and effort in achieving it.         
Ultimately, it is the unequivocal communication of       
ideas, code, and data that will bring much needed         
transparency to computational research    
experiments, and science en masse. 
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S​UPPLEMENTARY​ M​ATERIAL 
 

 

Model name Backend Model format Task I/O 

squeezenet ​[25] mxnet .onnx ImageNet classification 2D image / probabilities 

googlenet ​[24] caffe .caffemodel 

inception-v3 ​[19] tensorflow/keras .h5 

vgg-19 ​[22] mxnet .onnx 

xception ​[18] tensorflow/keras .h5 

alexnet ​[26] caffe .caffemodel 

densenet ​[20] tensorflow 
keras 

.h5 

resnet-50 ​[21] mxnet .onnx 

mobilenet ​[23] mxnet .onnx 

emotion-fer-plus ​[43] cntk .onnx Facial Expression Recognition 2D image / probabilities 

cardiac-fcn ​[44] tensorflow/keras .h5 Segmenting the right ventricle in MRI DICOM / 2D mask 

cascaded-fcn-liver ​[45]  caffe .caffemodel Liver and liver lesion segmentation DICOM / 2D contour 

deep-prognosis ​[46] tensorflow/keras .h5 Predict survival of lung cancer patients 3D array / probabilities 

sfm-learner-pose ​[47] tensorflow .pb Unsupervised Pose & Depth Estimation 2D image / 1D vector 

arc-face ​[48] mxnet .onnx Facial Detection & Recognition 2D image / 1D vector 

duc-semantic ​[49] mxnet .onnx Semantic Segmentation 2D image / 2D segmentation map 

yolo-v3 ​[50] tensorflow/keras .h5 Real-Time Object Detection 2D image / 3D array 

lfb-rwth-brats ​[13] pytorch .pth Brain Tumor Segmentation on MRI multi NIfTI / 3D segmentation map 

mic-dkfz-brats ​[14] pytorch .model 

deepscan-brats ​[15] pytorch .pth 

 
 

Supplementary Table 1.​ Models currently included into the ModelHub registry, illustrating the various backends, model formats, tasks, and I/O formats 
supported by ModelHub. 
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