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Artificial vs Human Intelligence

Early efforts

Current state

Future outlook

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

Performance

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

General Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence
improves as we learn

from Al

Human

Al

Abmed Hosny, Chintan Parmar, John Quackenbush, et al.

Time

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018




Revival of Research in Neural Networks

Artificial
Intelligence

Machine
Learning

Representation principal component analysis,
Learning shallow autoencoders, ...

Deep X

Learning convolutional neural
networks, generative
adversarial networks,

stacked autoencoders, ...




Revival of Research in Neural Networks
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Deep Learning

Abmed Hosny, Chintan Parmar, Jobn Quackenbush, et al.

a Predefined engineered features + traditional machine learning

Feature engineering
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Expert knowledge
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b Deep learning
Input Hidden layers

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

Increasingly higher-level features

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018




Deep Learning

“abdomen”

Fig. 1: Convolutional neural network (CNN). A straightforward application of CNNs for anatomy classification in whole body

CT scans can be found in [10] (illustration after [2]).
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Fig. 2: Fully convolutional network (FCN). Examples of FCNs applied to semantic segmentation tasks in medical imaging can

be found in [17]-[19], [25] (illustration after [2]).

Holger R Roth, Chen Shen, Hirobisa Oda, et al.

Deep Learning and its Application to Medical Image Segmentation

https://arxiv.org/abs/1803.08691



Problems (Features) in Radiation Oncology

Labor- & time- intensive

Requires highly skilled specialists

Large variability



Opportunities in Radiation Oncology

Reliance on human-machine interaction

Data-heavy

Knowledge and experience gap



Today’s Radiotherapy Workflow
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Potential Improvements
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New Components
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Precision Radiation Oncology

Sophia C Kamran e Kent W Mouw

Precision Medicine Approach to Radiation Oncology

Clinical and biological information

“Classic” clinical-pathologic features
- Patient age, comorbidities
- Tumor stage, location, histology
- Validated IHC markers

Tumor molecular features (genomics)

- Mutational status (oncogenes/tumor
suppressors, mutational burden)
Copy number alterations
Gene expression patterns
Protein expression, pathway(s) activity

Tumor imaging features (radiomics)
- Size, location
- Shape, heterogeneity

Tumor functional profiling
- Ex vivo assays
- Patient-derived models (cell lines,
organoids, xenografts)

Treatment Decisions

Who requires radiation?
Who can avoid radiation?

What is the appropriate
radiation dose and field?

Which agents (if any) should
be combined with radiation?

What is the optimal sequence
of therapies?

Applying Precision Oncology Principles in Radiation Oncology

JCO Precision Oncology - 2018



Tumor Characterization
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Abmed Hosny, Chintan Parmar, Thibaud Coroller, et al.
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Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study
PLOS Medicine - 2018



Tumor Characterization

INPUT IMAGE WITH ANNOTATIONS ACTIVATION HEATMAPS

Abmed Hosny, Chintan Parmar, Thibaud Coroller, et al.

Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study
PLOS Medicine - 2018



Reconstruction of Undersampled MRI

Conventional

Sensor reconstruction chain

AUTOMAP
reconstruction

¥ FC2 FC3 myxnxn C2  nxn
P n-onxn my,xnxn

Bo Zhu, Jeremiah Z Liu, Stephen I Cauley, et al.

Image Reconstruction by Domain Transform Manifold Learning
Nature - 2018



Target Segmentation

Commercial Software | Commercial Software
+ Expert

- =

Example 1

Phase 1 Phase 2 Phase 3

1st
2nd
3rd
4th

Example 2

5th
6th
7th

Example 3

Example 4

Raymond H Mak, Michael G Endyes, Jin H Paik, et al.

Use of Crowd Innovation to Develop an Artificial Intelligence—Based Solution for Radiation Therapy Targeting
JAMA Oncology - 2019



OAR Segmentation

CT image Oncologist contour Model contour Contour outline comparison
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Stanislav Nikolov, Sam Blackwell, Rubeena Mendes, et al.

Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy
Medical Image Computing & Computer Assisted Intervention (MICCAI) - 2018



OAR Segmentation

acceptable deviation™ ~- ___ .

Figure 3 | Surface DSC performance metric. (a) lllustration of the computation of the surface DSC. Continuous
line: predicted surface. Dashed line: ground truth surface. Black arrow: the maximum margin of deviation which may
be tolerated without penalty, hereafter referred to by . Note that in our use case each OAR has an independently
calculated value for =. Green: acceptable surface parts (distance between surfaces < 7). Pink: unacceptable
regions of the surfaces (distance between surfaces > 7). The proposed surface DSC metric reports the good
surface parts compared to the total surface (sum of predicted surface area and ground truth surface area). (b)
lllustration of the determination of the organ-specific tolerance. Green: segmentation of an organ by oncologist A.
Black: segmentation by oncologist B. Red: distances between the surfaces. We defined the organ-specific tolerance
as the 95th percentile of the distances collected across multiple segmentations from a subset of seven TCIA scans,
where each segmentation was performed a radiographer arbitrated by an oncologist, neither of whom had seen the

scan previously.

Stanislav Nikolov, Sam Blackwell, Rubeena Mendes, et al.

Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy
Medical Image Computing & Computer Assisted Intervention (MICCAI) - 2018



Planning

Jiawei Fan, fiazhou Wang, Zhi Chen, et al.

270 NPC
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radiotherapy plan
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Fic. 1. Flowchart showing the proposed automatic planning process. [Color

figure can be viewed at wileyonlinelibrary.com]

Automatic Treatment Planning Based on Three-dimensional Dose Distribution Predicted from Deep Learning Technique

Medical Physics - 2019



Planning
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Jiawei Fan, fiazhou Wang, Zhi Chen, et al.

Automatic Treatment Planning Based on Three-dimensional Dose Distribution Predicted from Deep Learning Technique
Medical Physics - 2019



Machine Trend & Error Prediction

Test: R=0.91164

A Resp of output 1 for time-series 1
T T

Output and target

Output ~=0.83"Target + 0.016
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Qiongge Li & Maria F Chan

Predictive Time-series Modeling using Artificial Neural Networks for Linac Beam Symmetry: An Empirical Study
Annals of the New York Academy of Sciences - 2016



MRI to Synthetic CT

CT Dose sCT Dose Dose difference

Anna M Dinkla, Jelmer M Wolterink, Matteo Maspero, et al.

MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network
International Journal of Radiation Oncology - 2018



Toxicity Prediction

Dose volume over
hepatobiliary tract Convolutional neural network
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Bulat Ibragimov, Diego loesca, Daniel Chang, et al.

Development of Deep Neural Network for Individualized Hepatobiliary Toxicity Prediction after Liver SBRT
Medical Physics - 2018



Plan Error Prediction
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Joel N K Carlson, Jong M Park, So-Yeon Park, et al.

A Machine Learning Approach to the Accurate Prediction of Multi-leat Collimator Positional Errors
Physics in Medicine & Biology - 2016



Lack of External Validation

Table 1. Subject Fields of Articles Analyzed
Subject Fields" Num;r of Artlgs (%)

Radiology (including nuclear medicine) 366 (70.9)
Ophthalmology 54 (10.5)
Pathology .9)
Dermatology 19(3.7)
Gastroenterology 19 (3.7)
Other fields 15(2.9)
Combined fields

Radiology and cardiology 1(0.2)

Pathology and nuclear medicine 1(0.2)
Total 516 (100)

"Listed in descending order of article number.

Table 2. Study Design Characteristics of Articles Analyzed
All Articles (n=516) Articles Published in Medical Journals (n=437) Articles Published in Non-Medical Journals (n=79) P

Design Characteristic

External validation 1.000
Used 31(6.0) 27 (6.2) 4(5.1)
Not used 485 (94.0) 410 (93.8) 75 (94.9)

In studies that used external validation
Diagnostic cohort design 5(1.0) 5(1.1) 0(0) 1.000
Data from multiple institutions 15(2.9) 12 (2.7) 3(3.8) 0.713
Prospective data collection 4(0.8) 4(0.9) 0(0) 1.000
Fulfillment of all of above three criteria 0(0) 0(0) 0(0) 1.000
Fulfillment of at least two criteria 3(0.6) 3(0.7) 0 (0) 1.000
Fulfillment of at least one criterion 21 (4.1) 18 (4.1) 3(3.8) 1.000

Data are expressed as number of articles with corresponding percentage enclosed in
parentheses. "Comparison between medical and non-medical journals.

Dong W Kim, Hye Y Jang, Kyung W Kim, et al.
Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images

Korean Journal of Radiology - 2019




Clinical Translation

HEALTHCARE AI CHALLENGES

Clinically effective uses for Al have been poorly defined

PERFECT

2 No standards for clinical integration / care management _ CuassiFier ROC CuRvEs
1
¥ ) i Al A
3 Large, annotated training sets are difficult to create _ I
I
4 Currently no successful economic/business models _ :
R ]! b
5 Limitations in current Al/human UX/UI _ s g
5! :
<
6 Inconsistent results and explicability between models _ @ | E
| <
7 Healthcare regulatory hurdles are challenging - I
8 Resulting inference models are too brittle in practice - & g g 3
RANDOM PERFECT
0 SPECIFICITY 1 GUESS AUC CLASSIFIER
9 Data science algorithms are limited for healthcare use -
10 Poor acceptance of technology in healthcare .

Bibb Allen, Steven E Seltzer, Curtis P Langlotz, et al.

A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: 2018 NIH/RSNA/ACR/The Academy Workshop
Journal of the American College of Radiology - 2019



Validation Framework

e

.

ground truth
1. establish ) 4 2. model ) /3. model ranking 4
reference ground development in clinical setting
standard Foth with different by other readers
"a" ground truth approaches/loss (some objective
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Y 3

feedback
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Validation Framework

(measure time to reach
decision to act as some

tumor size and experiment
\ progression)

/ Q1 Turing test - Al or not? \

confidence interval - correct for

)

Al

not Al

/

o

Q2 Rate it

A: "perfect" needs no work
B: "good" needs slight adjustments
C: "satisfactory" needs work
D: "horrible" needs a lot of work

N\

)

B,C,D

Q3 fixit.
Measure time and

compare result to
ground truth

y

Q4 useful?
Did this help or you would

rather start from scratch?




Validation Framework

Recruiting non-research staff to conduct experiments

Assessing time and effort assessment in carrying out clinical tasks

Develop plugins for clinical systems




Clinical Adoption
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Clinical Adoption

RaySearch —» VA RYA N PH I I.I PS

medical syste

Poor performance?

Poor implementation?

Lack of time?



Thank you!
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