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Artificial vs Human Intelligence

Performance

Early efforts

Current state

Future outlook

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

. Human

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

General Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence
improves as we learn

from Al

Al

Time

Abmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz & Hugo JWL Aeris

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018




Artificial
Intelligence

Machine
Learning

Representation principal component analysis,
Learning shallow autoencoders, ...

Deep X

Learning convolutional neural
networks, generative
adversarial networks,

stacked autoencoders, ...
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A Simple Neural Network
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Backpropagation & Gradient Descent in Neural Networks

MATURE VOL 323 3 OCTOBER 1985
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Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Camegie-Mellon University,
Piusburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the diference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features dis
guishes back-propagation from earlicr, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors” Learning becomes more imeresting but

17Ta whom conmespendence should be addressed

David E Rumelhart, Geoffrey E Hinton & Ronald ] Williams
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more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts 1o deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a Iayer or from Ingher to Inwer
layers are but can skip i
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the gutput units are determined

The total input, X;, to unit j is a linear function of the outputs,
¥i, of the units that are connected to j and of the weights, w,

on these connections

5 =Lywn (n

Units can be given biases by introducing an extra input to each
Onit which always has a value of 1. The weight on this extra
input is called the bias and is equivalem 0 a threshold of the
opposite sign. [t can be treated just like the other weights.

A nit has a real-valued output, y;,, which is a non-linear

function of jts total input

et
T+e

n= )
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Input units
Fig. 1 A network that has learned to deteet mirror symmetry in
the input vector. The numbers on the arcs are weights and the
numbers inside the nodes are biases The leaming required 1,425
the set of 64 possible input vectors,

being adjusted on the basis of the accumulated gradient afier sach
sweep. The values of the parameters in equation (9) were ¢ =0.1
and @ =09. The initial weights were random and were uniformly
distributed between —0.3 and 0.3, The key property of this solution
is nm for a given hidden unit, weights that are symmetric about
[ e of the input vector are equal in magnitude and opposite
in ugn So if a symmetrical pattern is presented, both hidden units
will receive a net input of 0 from the input units, and, because the
hidden units have a negative bias, both will be off. [n this case the
output unit, having a positive bias, will be on. Note that the weights
on each side of the midpoint are in the ratio 1:2:4. This ensures
that each of the eight patterns that can occur above the midpoint
sends a unique activation sum o each hidden unit, s the only
pauzm below the midpoint that can exacily balance this sum is

Forall pattcens, both mddm
units will receive non-zero aclivations from the input u
two hidden units have identical pauerns of weights but wuh
opposite signs, so for every non-symmetric pattern one hidden unit

will come on and suppress the output unit.

It is not necessary to use exactly the functions given in equations
(1) and (2). Any input-output function which has a bounded
derivative will do. However, the use of a linear function for
combining the inputs to a unit before applying the nonlinearity
greatly simplifies the learning procedure.

The aim is to find a set of weights that ensure that for each
input vector the output vector produced by the network is the
same as (or sufficiently close to) the desired output vector. If
there is a fixed, finite set of input-output cases, the total error
in the performance of the network with a particular set of weights
can be computed by comparing the actual and desired output
vectors for every case. The total error, E, is defined as
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where ¢ is an index over cases (input-output pairs), j is an
index over output units, ¥ is the actual state of an output unit
and d is its desired state. To minimize E by gradient descent
itis necessary to compute the partial derivative-of-£-with respect
to each weight in the network. This is simply the sum of the
partial derivatives for each of the input-output cases For a
given case, the partial derivatives of the error with. respect to

ight d_in two passes. We have already
described the ferward pass in which the units in each layer have
their states determined by the input they receive from units in
lower layers using equnnons (l} and (2). The backward pass

which from the top |aver Back to the

bottom one is more complicated
20U OB TS T

NATURE VOL_ 123 9 OCTOBER 1986
Chiistopher = Pansiope Andrew = Christine
Margaret = Arthur Victaria = Jamea Jenniter = Charies
Caiin Charlatte
Robano = Maria Plaro = Franceaca
Gina = Emilio Lucia = Marea Angela = Tomaso
Altonsa Soghia

Fig. 2 Two isomorphic family trees The information can be
expressed as a set of wiples of the form (person 1 ){relationship)
(person 2), where the possible relationships ace (father, mother,
husband, wile, san, daughter, uncle, aunt, brother, sister, nephew,
niece] A layered net can be said to i
produce the third term of each triple when given the first two. The
first two terms are encaded by activating two of the input units,
and the netwark must then complete the proposition by activating
the output unit that represents the third term

ity levels in a five-layer network after it has learned
The bottom layer has 24 input units on the left for representing
{person 1) and 12 input units on the right for representing the
relationship. The white squares inside these two groups show the
activity levels of the units. There is one active unit in the first group
Colin and one in the secand group representing the
relationship *has-aunt’ Each of the two input groups is totally
cannected ta its own group of 6 units in the second layer. These
groups leam to encode people and relationships as distributed
patterns of activity. The second layer is totally connected to the
central layer of 12 units, and these are connected to the penultimate
layer of 6 units. The activity in the penultimate layer must activate
the correct output units, each of which stands for a panicular
{person 2). In this case, there are two correct answers (marked by
black dots) because Colin has two aunts Both the input units and
the output units are laid out spatially with the English people in

ane row and the isomorphic halians immediately below

a
B
2

The backward pass starts by computing d£/dy for each of
the output units. Differentiatis :quauun (3) for a particular
case, ¢, and suppressing the md:x € gives

AE/3y,=y,~4d, (4)

We can then apply the chain rule to compute 3E/ax,

3E/ax;=aE [ay, dy,/dx,
D.ﬂeunm(mg equation (2) to get the value of dy;/dx; and
substituting gives

QE/ax=aE/dy; 1= y) (%)
This means that we know how a change in the total input x to
an output unit will affect the error. Bur this total input is just a
linear function of the states of the lower level units and it is
also a linear function of the weights on the connections, so it
is easy to compute how the etror will be affected by changing
these states and weights. For a weight wy, from i to j the
derivative is

3E/awy = dE[ax; ax)faw;
=3E/ax; % (8)
and for the output of the i*" unit the contribution to 3E/ay,

Learning Representations by Back-propagating Errors

Nature - 1986
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A Simple Neural Network

[oToTeToleToo M T o]

training label

&

\

28x28=784

Ho

I

training image

LI

~ ~ ~
00 oo =]
CJ ] —

oenoREEEED

—

l

o] [=] (][] [ [= ][] [~][=][e]



A Simple Neural Network
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Convolutional Neural Networks

Input (32x32x3)

Fully Connected (2048)

Convolution
5 Number of Filters: 128
o N Receptive Field: (5.5)
RS Stride: (2,2)
‘e . Padding:Same
Pooling
Kernel Size: (3,3)
Stride: (2,2)
- . Padding:Same
Preg, S 0 Convolution
o N Mumber of Filters: 256
¥ Receptive Field: (3,3)
S sty N, Stride:(1,1)
T . Padding:Same
“ M
Pooling
Kernel Size: (2,2)
Stride: (2,2)
Padding:Same

www. thushv.com/computer_vision/convolutional-neural-networks-mayor-of-the-visionville/

Classification



Neocognitron

K Ky

Fig. 2. Schematic diagram illustrating the Fig. 3. Illustration showing the input interconnections to the cells
interconnections between layers in the within a single cell-plane
neocognitron

Kunihiko Fukushima

Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
Biological Cybernetics - 1980



LeNet-5

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28
32x32 S2: f. maps
6@14x14

|
‘ ‘ FuIIconAection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-

nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

Yann LeCun, Patrick Haffner, Léon Bottou & Yoshua Bengio

C1 s2 CVS S4 C5

e

4 < Output

CIBMR AREN

w250

Fig. 4. Examples of unusual, distorted, and noisy characters correctly recognized by

LeNet-5. The grey-level of the output label represents the penalty (lighter for higher
penalties).

Object Recognition with Gradient Based Learning
Shape, Contour and Grouping in Computer Vision - 1999



Revival of Neural Networks




AlexNet

138 204¢ 7o4g \dense

dense dense

1000

128 Max
Max 128 Max pooling
pooling pooling

204¢ 2048

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

Alex Krizhevsky, Ilya Suiskever & Geoffrey E Hinton

ImageNet Classification with Deep Convolutional Neural Networks
Advances in Neural Information Processing Systems - 2012



AlexNet @ ImageNet

L

155 Jo4s \dense

3 13

13 | 13 dense dense|

192 128 Max L
Max 5T Max pooling 294 2048
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

devblogs. nvidia.com/mocha-jl-deep-learning-julia/
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Alpha Go

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
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David Silver, Aja Huang, Chris ] Maddison, et al.

Mastering the Game of Go with Deep Neural Networks and Tree Search
Nature - 2016



Alpha Go

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
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Open-Source Tools

-_: houseroad Rename ZFNet to ZFNet-512 (#36)

B bvlc_alexnet

i bvlc_googlenet

B bvlc_reference_caffenet
B8 bvlc_reference_rcnn_ilsvrc13
B densenet121

B detectron

I inception_v1

| inception_v2

| resnet50

Bl scripts

B squeezenet

B style_transfer

i vgg19

B zfnet512

& .gitattributes

LICENSE

E README.md

Update bvlc_alexnet model

Add the value_info json for the remaining of the models except style ...
Add the value_info json for the remaining of the models except style ...

Add the value_infojson for the remaining of the models except style ...

Add DenseNet-121 model

Add Detectron e2e_faster_rcnn_R-50-C4_2x model
Add Inception models

Add Inception models

Add ResNet-50 model

Add Detectron e2e_faster_rcnn_R-50-C4_2x model
Correct SqueezeNet value_info to 227x227

Add other style transfer models

Add VGG models

Rename ZFNet to ZFNet-512 (#36)

Remove squeezenet-specific lines from .gitattributes.

Add Apache 2.0 license

Update README to describe subdirectory access

Yangqing Jia, Evan Shelbamer, Jeff Donahue, et al.

Latest commit 3be4824 11 hours ago

4 months ago
3 months ago
3 months ago
3 months ago
4 months ago
3 months ago
4 months ago
4 months ago
4 months ago
3 months ago
3 months ago
4 months ago
4 months ago
11 hours ago
4 months ago
4 months ago

3 months ago

Keras %DMJ

L Caffe2  pyrHRrRCH

.toch  Caffe

B” Microsoft

CNTK ¥ TensorFlow
theano @Xnet

Misc.

Caffe: Convolutional Architecture for Fast Feature Embedding
arxiv.org/abs/1408.5093

Open-Source Deep Learning Libraries
github.com



Transfer Learning

10% WOLF

3

fortune.com/ai-artificial-intelligence-deep-machine-learning/



Transfer Learning

— FIX

FINE-TUNE

3

X

10% WOLF

3

fortune.com/ai-artificial-intelligence-deep-machine-learning/



Transfer Learning

— FIX

3

fortune.com/ai-artificial-intelligence-deep-machine-learning/



Transfer Learning

3

fortune.com/ai-artificial-intelligence-deep-machine-learning/



Applications in Medical Imaging




Early Logic and Statistical Pattern Recognition in Medicine

3 July 1959, Velume 130, Number 3366 SCI ENCE

Reasoning Foundations of

Medical Diagnosis

Symbolic logic, probability, and value theory

aid our

d ding of how physicians reason.

Robert S. Ledley and Lee B. Lusted

The purpose of this article is to ana-
lyze the complicated reasoning processes
inherent in medical diagnosis. The im-
portance of this problem has received
recent emphasis by the increasing inters
est in the use of electronic computers as
an aid to medical diagnostic processes
(1, 2). Before computers can be used
effectively for such purposes, however,
we need to know more about how the
physician makes a medical diagnosis.
1f a physician is asked, “How do you
make a medical diagnasisteshd
tion of the process

fitted into a definite disease category, or
that it may be one of several possible dis-
eases, or else that its exact nature cannot
be determined.” This, obviowly, is a
greatly simplified explanation of the
process of diagnesis, for the physician
might also comment that after seeing a
patient he often has a “feeling about the
case.” This “feeling,” although hard to
explain, may be a summation of his im-
pressions conceming the way the data
seem 1o fit together, the patient’s relia-

ance are the ones who do remember and
consider the most possibilities.”

Computers are especially suited to
help the physician collect and process
clinical information and remind him of
diagnoses which he may have over-
looked. In many cases computers may be
as simple as a set of hand-sorted cards,
whereas in other cases the use of a large-
scale digital electronic computer may be
indicated. There are other ways in which
computers may serve the physician, and
some of these are suggested in this paper.
For example, medical students might
find the computer an important aid in
learning the methods of differential di-
agnosis. But to use the computer thus
we must understand how the physician
makes 3 medical diagnosis. This, then,
brings us 16 the subject of our investiga-
tion: the reasoning foundations of med-
ical diagnosis and treatment,

Medical diagnosis invelves processes
that can be systematically analyzed, as
well as those characterized as “intan
gible.” For instance, the reasoning foun-
dations of medical diagnostic procedurcs
are precisely analyzable and can be sepa-
rated from certain considered intangible
judgments and value decisions. Such a
separation has several important advan-
tages. Firdt, systematization of the rea-

<~ Radiology -~

a monthly journal devoted to clinical radioiogy and allied sciences

PUBLISHED BY THE RADIOLOGICAL SOCIETY OF NORTH AMERICA, INC.

The Coding of Roentgen Images for
Computer Analysis as Applied to Lung Cancer'
GWILYM S. LODWICK, M.D., THEODORE E. KEATS, M.D., and JOHEN P. DORST, M.D.

HIS PAPER WILL DESCRIBE a concept cause, against a background of air density,
Tuf converting the visual images on the intimate dctails of the relationship
roentgenograms into numerical sequences between tumor and host may be faithfully
that can be manipulated and evaluated reproduced roentgenographically. Par
by the digits

ek ‘2 concept of converting the

graphic  findi
development

°‘ by the digital computer...

the result of

gerad visual images on roentgenograms
into numerical sequences...

g “increasing interest in the use of ki to determine the significance of

gt electronic computers as aid to g9 cortain radlograpl ||ngs in

73
s medical diagnostic processes” S it Iung cancer e

make a differential
the diseases which 1

data for this

reasonably resemble.
disease after another from the list unil
it becomes apparent that the case can be

Robert S Ledley & Lee B Lusted

be integrated by the physician with a
large store of possible diseases. It is
widely believed that errors in differen-
€al diagnosis result more frequently
from errors of omission than from other
sources. For instance, concerning such er-
rors of omission, Clendening and Hash-
inger (3) say: “How to guard ngainst
incompleteness I do not know. But I do
know that, in my judgment, the most
brilliant diagnosticians of my acquaint-

can be developed. However, a consider-
ation of foundations is always essential
as the fint step in the development of
practical applications.

The reasoning foundations of medical
diagnesis and treatment can be most
precisely investigated and described in
terms of certain mathematical tech-
niques. Before material to illustrate
these techniques was selected, many of
the New England Joural of Medicine

5

group of cases are shown in Table I.
to the control of a segment of exponentially Less than 1 per cent of the total number
expanding medical knowledge. were lost to follow-up. The absolute

We have chosen to apply this concept survival rate of 1.3 per cent for this highly
to roentgenograms of lung cancer be-  malignant tumor is even lower than that

radiological data, is a logical approach

1 From the Depar
and K

t of Radiology, University of Missouri School of Medicine, Columbia, Mo, (Drs. Lodwick
logy, University of Jowa College of Medicine, lowa City, lowa. Dr.

Dorst the Univ i

This in fon was supported i James Picker Foundation on recommendation of the Committee
on Rad National Academy of Sciens ational Research Council. the Forty-third
Ann lecting of the Radiological Society North America, Chicago, 111., Nov. 22, 1 . Submitted for

publication in October 19
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Guwilym S Lodwick, Theodore E Keats & John P Dorst

Reasoning Foundations of Medical Diagnosis

Science - 1959

The Coding of Roentgen Images for Computer Analysis as Applied to Lung Cancer
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Computer-Aided Diagnosis

number of publications on or related to CAD
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number of publications on or related to CAD

Bram van Ginneken, Cornelia M Schaefer-Prokop € Mathias Prokop

CAD systems approved or cleared by FDA in the US

CAD Systems Approved or Cleared by the FDA in the United States

Name/Company What It Does Type of Approval First and Last Date
Imagechecker/R2 Technology, Sunnyvale, Calif; Mass and microcalcification detection on mammograms PMA 6/1998-9/2007
Hologic, Bedford, Mass
Logicon caries detection/GA Industries, Detection of caries on intraoral radiographs PMA 9/1998-1/2007
Rancho Palos Verdes, Calif
Rapidscreen, Onguard/Riverain Medical, Nodule detection on chest radiographs PMA 7/2001-8/2007
Miamisburg, Ohio
SecondLook/Icad, Nashua, NH, Mass and microcalcification detection on mammograms PMA 1/2002-10/2008
LungCare Nodule Enhanced Viewing/Siemens, Nodule detection and volumetry at chest CT 510(k) 11/2003
Erlangen, Germany
MedicLung/MedicSight, London, England Nodule segmentation and viewing at chest CT 510(k) 12/2003
CT Colonography/General Electric, Fairfield, Conn Detection of polyps at CT 510(k) 5/2004
Imagechecker-CT/R2 Technology, Sunnyvale, Calif Detection of pulmonary embolism at chest CT 510(k) 6/2004
Lung CAR/MedicSight, London, England Nodule detection and volumetry at chest CT 510(k) 7/2004
Colon Car/MedicSight, London, England Detection of polyps at CT 510(k) 10/2004
Syngo Colonography/Siemens, Erlangen, Germany Detection of polyps at CT 510(k) 10/2004
IQOA/EDDA, Princeton, NJ Nodule detection on chest radiographs 510(k) 10/2004
Kodak Mammography CAD Engine/Carestream, Mass and microcalcification detection on mammograms PMA 11/2004-3/2007
Rochester, NY
Advanced Lung Analysis 2/General Electric, Nodule detection and volumetry at chest CT 510(k) 11/2004
Fairfield, Conn
Syngo Lung CAD/Siemens, Erlangen, Germany Nodule detection and volumetry at chest CT 510(k) 10/2006
ImageChecker CT CAD/Hologic, Bedford, Mass Nodule detection and volumetry at chest CT 510(k) 12/2007

Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic

Radiology - 2011



Deep Learning

a Predefined engineered features + traditional machine learning

Feature engineering

Histogram

&
Texture Shape

Expert knowledge

Selection

Classification

“EF“_,I @ —

v/

b Deep learning
Input Hidden layers

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

Increasingly higher-level features

Abmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwariz & Hugo JWL Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018




Diabetic Retinopathy Detection
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Varun Gulshan, Lily Peng, Marc Coram, et al.

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
The Journal of the American Medical Association (JAMA) - 2016



Skin Lesion Classification

Basal cell carcinomas ® Epidermal benign
W ] ¢ Epidermal malignant
\ Melanocytic benign

* Melanocytic malignant

Squamous cell carcinomas
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Andre Esteva, Brett Kuprel, Robert A Novoa, et al.

Dermatologist-level Classification of Skin Cancer with Deep Neural Networks
Nature - 2017



Deep Learning in Medical Imaging
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A Survey on Deep Learning in Medical Image Analysis
Medical Image Analysis - 2017



Deep Learning in Medical Imaging
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A Survey on Deep Learning in Medical Image Analysis
Medical Image Analysis - 2017
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Deep Learning in Medical Imaging
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Artificial Intelligence in Radiology

s / N r ™ N
/%%\
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reconstruction detection diagnosis segmentation characterization monitoring

Abmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz and Hugo JWL Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018



Reconstruction

Conventional

Sensor reconstruction chain

AUTOMAP
reconstruction

Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen & Matthew S Rosen

FC1

"FC2
2

n

FC3
nPsnxn

myxnxn

Image Reconstruction by Domain-transform Manifold Learning

Nature - 2018



Detection & Diagnosis

Search kaggle Q Competitions Datasets Kernels Discussion Learn

Data Science Bowl 2017

Can you improve lung cancer detection?

Passion. Curlosity. Purpase. $1,00 )0 - 394 teams - a year ago

Overview Data Kernels Discussion Leaderboard Rules



Detection & Diagnosis

Search kaggle Q Competitions Datasets Kernels Discussion

Data Science Bowl 2017
(' DATA
SCIENCE
BOWL . Can you improve lung cancer detection?
Pession. Curioity.Purpcse. $1,000,000 - 394 teams - a year ago

Overview Data Kernels Discussion Leaderboard Rules

3D cube 24 ) 64

o Residual Block o Deconvolution Layer

. o Combining Unit [ Location crop

o Two Convolutional Layers

Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu & Sen Song

Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network
arxiv.org/abs/1711.08324



Detection & Diagnosis

Search kaggle Q Competitions Datasets Kernels Discussion Learn s+

Data Science Bowl 2017
(' DATA
SCIENCE
BOWL . Can you improve lung cancer detection?
Pession. Curioity.Purpcse. $1,000,000 - 394 teams - a year ago

Overview Data Kernels Discussion Leaderboard Rules
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Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu & Sen Song

Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network
arxiv.org/abs/1711.08324



Detection & Diagnosis

Sensitivity
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Paras Lakhani ¢ Baskaran Sundaram

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
Radiology - 2017



Detection & Diagnosis
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Paras Lakhani & Baskaran Sundaram

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
Radiology - 2017



Segmentation

forward /inference

backward /learning

Figure 1. Fully convolutional networks can efficiently learn to

make dense predictions for per-pixel tasks like semantic segmen-
tation.

Jonathan Long, Evan Shelhamer & Trevor Darrell

32x upsampled

image convl pooll conv2 pool2 convy pool3 convd poold convh poold  conv6-7 prediction (FCN-32s)
16x upsampled
2 7
* conv‘ prediction (FCN-16s)
poold { ‘
8x upsampled
4x conv7 prediction (FCN-8s)

2x pool

4
pool3 |

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the poo14 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from poo13, at stride 8, provide further precision.

Fully Convolutional Networks for Semantic Segmentation

Conference on Computer Vision and Pattern Recognition (CVPR) - 2015



Segmentation
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U-Net: Convolutional Networks for Biomedical Image Segmentation V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
MICCAI - 2015 arxiv.org/abs/1606.04797



Segmentation

@ Heart segmentation Coronary calcium
segmentaion

*

7 s Agatston
” Score

Roman Zeleznik, Parastou Eslami, Borek Foldyna, et al.

Deep Convolutional Neural Networks to Predict Cardiovascular Risk from Non-contrast Computed Tomography Images
Under Review - 2018



Segmentation

@ Heart segmentation Coronary calcium
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Roman Zeleznik, Parastou Eslami, Borek Foldyna, et al.

Deep Convolutional Neural Networks to Predict Cardiovascular Risk from Non-contrast Computed Tomography Images
Under Review - 2018



Segmentation for Radiotherapy

CT image Oncologist contour Model contour Contour outline comparison

.Brain

_ |Lacrimal Left / Right
Lens Left / Right
IOptic Nerve Left / Right
| Orbit Left / Right
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| Brainstem
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Stanislav Nikolov, Sam Blackwell, Ruheena Mendes, et al.

Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy
Medical Image Computing & Computer Assisted Intervention (MICCAI) - 2018



Segmentation for Radiotherapy

acceptable deviation -~ __ e

Figure 3 | Surface DSC performance metric. (a) lllustration of the computation of the surface DSC. Continuous
line: predicted surface. Dashed line: ground truth surface. Black arrow: the maximum margin of deviation which may
be tolerated without penalty, hereafter referred to by . Note that in our use case each OAR has an independently
calculated value for 7. Green: acceptable surface parts (distance between surfaces < 7). Pink: unacceptable
regions of the surfaces (distance between surfaces > 7). The proposed surface DSC metric reports the good
surface parts compared to the total surface (sum of predicted surface area and ground truth surface area). (b)
lllustration of the determination of the organ-specific tolerance. Green: segmentation of an organ by oncologist A.
Black: segmentation by oncologist B. Red: distances between the surfaces. We defined the organ-specific tolerance
as the 95th percentile of the distances collected across multiple segmentations from a subset of seven TCIA scans,
where each segmentation was performed a radiographer arbitrated by an oncologist, neither of whom had seen the

scan previously.

Stanislav Nikolov, Sam Blackwell, Ruheena Mendes, et al.

Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy
Medical Image Computing & Computer Assisted Intervention (MICCAI) - 2018



Characterization
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Abmed Hosny, Chintan Parmar, Thibaud Coroller, et al.

Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study
Under Review
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Characterization
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Monitoring

Input Pretrained CNN RNN
i Average
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Pre-TX Fully
/ Connected
Softmax
1 Month / H |
Missed I‘
Scan , ‘
6 Month /

Yiwen Xu, Ahmed Hosny, Roman Zeleznik, et al.

Non-invasive Tracking of Lung Cancer Treatment Response Using Deep Learning-based Longitudinal Image Analysis
Under Review



Monitoring
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Challenges




Data, Data, and Data

CT exams per 1000 inhabitants (U201 7 or latest available)

OECD

1in10

MRI exams per 1000 inhabitants (2017 or latest available)

Health at a Glance 2017: OECD Indicators

The Organisation for Economic Co-operation and Development (OECD) - 2017



Data Curation

The Pros and Cons of Amazon Mechanical Turk

The Daily Dot



Scale vs Performance
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Scale Drives Deep Learning Progress
Deep Learning Course - Coursera



Unsupervised Learning

original

tumor mirrored

tumor on normal tumor 16% smaller tumor 16% larger

Hoo-Chang Shin, Neil A Tenenholtz, Jameson K Rogers, et al,

Medical Image Synthesis for Data Augmentation and Anonymization using Generative Adversarial Networks
Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI) - 2018



Self-Supervised Learning

Unsupervised

Auxiliary = ight Cross
Descriptor Task i Entropy

Layers £l Loss

Large
Unlabeled

Dataset

Max Blendowski, Hannes Nickisch ¢ Mattias P Heinrich

Selt-Supervised Convolutional Feature Training for Medical Volume Scans
semanticscholar.org



Self-Supervised Learning

Unsupervised

Auxiliary R Cross
Descriptor Task ° Entropy
Layers Front Loss

Large
Unlabeled

Dataset

Jajsuely ySisp

Supervised

Segmentation Cross

Descriptor Task Entropy
Layers Loss

Small
Labeled

Dataset

Max Blendowski, Hannes Nickisch ¢ Mattias P Heinrich

Selt-Supervised Convolutional Feature Training for Medical Volume Scans
semanticscholar.org



Benchmarking Datasets
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Yann LeCun, Corinna Cortes & Christopher JC Burges
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Alex Krizheuvsky

The MNIST Database of Handwritten Digits

yann.lecun.com/exdb/mnist & corochann.com

The CIFAR-10 dataset

cs.toronto.edu/~kriz/cifar.html



Davide Castelvecchi

Can we Open the Black Box of AI?
Nature - 2016




Interpretability

(d) Guided Grad-CAM “Cat’ (e) Occlusion map for ‘Cat
"

(c) Grad-CAM *“Cat’

(b) Guided Backprop ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’  (j) Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (1) ResNet Grad-CAM ‘Dog’
Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]:
highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (¢) gives Guided Grad-CAM, which gives high-
resolution class-discriminative visualizations.Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e),
while being orders of magnitude cheaper to compute. (f, 1) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, 1), red regions corresponds to high score for
class, while in (e, k). blue corresponds to evidence for the class. Figure best viewed in color.

Ramprasaath R Selvaraju, Michael Cogswell, Abbishek Das, et al.

Grad-CAM :visual Explanations from Deep Networks via Gradient-based Localization
IEEE International Conference on Computer Vision (ICCV) - 2017




Interpretability

“Vase" classification is
dominated by |eaf and top
of vase detectors, as
opposed to bumpy, round

(b) Guided Backprop ‘Cat’ (c¢) Grad-CAM “Cat’

9 and yellow detectors used
- " for *lemon*.
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SUPPORT ... NASE N —— M
feature visualization of channel
= 1
(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’  (j) Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (1) ResNet Grad-CAM ‘Dog’
Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]: zi_fé‘fi;“ ey
highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (¢) gives Guided Grad-CAM, which gives high- ‘
resolution class-discriminative visualizations.Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e), . -
while being orders of magnitude cheaper to compute. (f, 1) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, 1), red regions corresponds to high score for net evidence 114 0.91 104 175 _
class, while in (e, k). blue corresponds to evidence for the class. Figure best viewed in color.
for “vase" 0.83 1.25 -0.69 -0.53 -0.33
for “lemon” -030 034 035 122 . 38

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, et al. Chris Olah, Arvind Satyanarayan, lan Johnson, et al.

Grad-CAM :visual Explanations from Deep Networks via Gradient-based Localization The BU.lldIIlg Blocks of Inter pr etability
IEEE International Conference on Computer Vision (ICCV) - 2017 distill.pub




Regulatory Aspects

Aidoc

iCAD

Zebra Medical
Bay Labs
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IDx
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MaxQ-Al
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Eric Topol
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CT Brain bleed diagnosis

Breast density via mammography
Coronary calcium scoring
Echocardiogram EF determination
Device for paramedic stroke diagnosis
Diabetic retinopathy diagnosis

MRI brain interpretation

X-ray wrist fracture diagnosis

CT Stroke diagnosis

Liver and lung cancer (MRI,CT) diagnosis
CT Brain bleed diagnosis

Atrial fibrillation detection via Apple Watch
MRI heart interpretation

FDA Approvals for Al in Medicine
twitter.com/EricTopol/status/1028642832171458563
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CT Brain bleed diagnosis

Breast density via mammography
Coronary calcium scoring
Echocardiogram EF determination
Device for paramedic stroke diagnosis
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MRI brain interpretation
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CT Stroke diagnosis

Liver and lung cancer (MRI,CT) diagnosis
CT Brain bleed diagnosis

Atrial fibrillation detection via Apple Watch
MRI heart interpretation

FDA Approvals for Al in Medicine
twitter.com/EricTopol/status/1028642832171458563

What is ground truth data?

Data as an active ingredient in models

Life-long learning models



Ethical Challenges
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Joy Buolamwini & Timnit Gebru

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification
Conference on Fairness, Accountability, and Transparency - 2018
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Julia Angwin, Jeff Larson, Surya Matiu & Lauren Kirchner

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification
Conference on Fairness, Accountability, and Transparency - 2018

Machine Bias
ProPublica - 2016



Ethical Breaches in Health Care

@
The UK’s independent authority set up to uphold information
& rights in the public interest, promoting openness by public

Information Commissioner's Office bodies and data privacy for individuals.

Home  Your data matters  For organisations = Make a complaint  Action we've taken

About the ICO / News and events / News and blogs /

Royal Free - Google DeepMind trial failed to
comply with data protection law

Date 03 July 2017
Type News

The ICO has ruled the Royal Free NHS Foundation Trust failed to comply with the Data
Protection Act when it provided patient details to Google DeepMind.

The Trust provided personal data of around 1.6 million patients as part of a trial to
test an alert, diagnosis and detection system for acute kidney injury.

But an ICO investigation found several shortcomings in how the data was handled,
including that patients were not adequately informed that their data would be used as
part of the test.

The Trust has been asked to commit to changes ensuring it is acting in line with the
law by signing an undertaking.

United Kingdom Information Commissioners Office

Google DeepMind Trial Failed to Comply with Data Protection Law

ico.org.uk



Ethical Breaches in Health Care

@
The UK’s independent authority set up to uphold information
& rights in the public interest, promoting openness by public

Information Commissioner's Office bodies and data privacy for individuals.

Home  Your data matters  For organisations = Make a complaint  Action we've taken

m PROPUBLICA TOPICS v SERIESv NEWSAPPS GETINVOLVED IMPACT ABOUT 0O

About the ICO / News and events / News and blogs /

Royal Free - Google DeepMind trial failed to
comply with data protection law

Sloan Kettering’s Cozy Deal With
Start-Up Ignites a New Uproar

A for-profit venture with exclusive rights to use the cancer center’s vast archive
of tissue slides has generated concerns among pathologists at the hospital, as
well as experts in nonprofit law and corporate governance.

Date 03 July 2017
Type News

The ICO has ruled the Royal Free NHS Foundation Trust failed to comply with the Data
Protection Act when it provided patient details to Google DeepMind.

® @ H € A

The Trust provided personal data of around 1.6 million patients as part of a trial to
test an alert, diagnosis and detection system for acute kidney injury.

But an ICO investigation found several shortcomings in how the data was handled,
including that patients were not adequately informed that their data would be used as
part of the test.

The Trust has been asked to commit to changes ensuring it is acting in line with the
law by signing an undertaking.

United Kingdom Information Commissioners Office Charles Ornstein & Katie Thomas

Google DeepMind Trial Failed to Comply with Data Protection Law ~ Sloan Kettering’s Cozy Deal with Start-Up Ignites a New Uproar

ico.org.uk propublica.org & nytimes.com



Ethical Challenges

Algorithms mirroring human bias
Unethical algorithms

Exacerbate tension between improving health and generating profit

Learned helplesshess

Algorithm as third-party “actor” into the physician-patient relationship

Danton S. Char, Nigam H. Shah & David Magnus

Implementing Machine Learning in Health Care — Addressing Ethical Challenges
The New England Journal of Medicine (NEJM) - 2018



Security

Employee error exposed Ransomware attack

Blue Cross patient data for breaches 40,800 patient
3 months records in Hawaii
by Jessica Davis = September 21, 2018 by Jessica Davis  September 13, 2018

417,000 Augusta University Canadian pharmacist fined

Health patient records for routinely accessing
breached nearly one year health records of

ago acquaintances

by Jessica Davis = August 17, 2018 by Lynne Minion | August 13,2018

Healthcare IT News Staff

Phishing attack breaches
38,000 patient records at
Legacy Health

by Jessica Davis = August 22, 2018

1.4M records breached in
UnityPoint Health phishing
attack

by Jessica Davis = July 31,2018

The Biggest Health Care Data Breaches of 2018 (so far)

healthcareitnews.com



Security

Brendan McMahan, Eider Moore, Daniel Ramage, et al.

Communication-Efficient Learning of Deep Networks from Decentralized Data
20th International Conference on Artificial Intelligence and Statistics (AISTATS) - 2017



Security

Brendan McMahan, Eider Moore, Daniel Ramage, et al. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, et al.

Communication-Efficient Lear ning of Deep Networks from Decentralized Data  Cr yptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy
20th International Conference on Artificial Intelligence and Statistics (AISTATS) - 2017  International Conference on Machine Learning (ICML) - 2016



In Conclusion ...




A Step in the Right Direction
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Norbert | Pelc

Recent and Future Directions in CT Imaging
Annals of Biomedical Engineering - 2014



Reproducibility

Code break

In a survey of 400 artificial intelligence papers pre-
sented at major conferences, just 6% included code
for the papers’ algorithms. Some 30% included test
data, whereas 54% included pseudocode, a limited
summary of an algorithm.
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Papers including variable (%)

o

Code Testdata Pseudocode

Matthew Hutson

Artificial Intelligence Faces Reproducibility Crisis
Science - 2018



PyRadiomics

O Features Business Explore Marketplace Pricing

Sign in o/ Sign up

Radiomics / pyradiomics

<> Code Issues 18

® Watch

—_—

% Star | 180 YFork 90

Pull requests 4 Projects 3 Wiki Insights
/— FILTERS —
Laplacian of FEATURE
\_ gaussian 4 CLASSES
( Wavel ) Firstorder |
L avelet ) L irst order )
/' 3 ( sh )
\: Square L ape
=
(quuare root | ( GLCM )
= Can )
' . A SETTINGS
\WLoganthm ) g GLRLM
P
i ) ( LSZM
\Fxponentlal ) l “ GLS. )
IMAGE FEATURE
PREPROCESSING EXTRACTOR

Image acquisition
& segmentation

PyRadiomics platform

Joost JM van Griethuysen, Andriy Fedorov, Chintan Parmar, Abmed Hosny, et al.

Data analysis &
association studies

Computational Radiomics System to Decode the Radiographic Phenotype

Cancer Research - 2017



Modelhub

O Features Business Explore Marketplace Pricing Sign in o/ Sign up

modelhub-ai / modelhub ©Watch 2 | star 14 YFork 2
<> Code Issues 12 Pull requests 0 Projects 0 Wiki Insights
0De
efie
test drive
framework —— for everyone

run locally or remotely and quickly

z explore the model in your broswer
frontend (optional)

web interface + notebook

contributor pre-/post-processing, sample

- =
a contrib_src | n

data and models |

published models
backend

modelhub engine + web app

jupyter notebook

for researchers
run modelhub dockers locally and
test on your own data

<[>

API
for developers

deploy modelhub dockers and make API
calls for model information & predictions

Ahmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts

Modelhub: Plug & Predict Solutions for Reproducible Al Research

modelhub.ai



Mind The Hype

Advances in artificial intelligence (Al) will transform modern life by reshaping transportation,
health, science, finance, and the military. To adapt public policy, we need to better

anticipate these advances. Here we report the results from a large survey of machine learning
researchers on their beliefs about progress in Al JREEEET(e g T e R ol (Yo [To VRN T NIl (o -Tg (oT7 1!
T =L CR T N ETNE TG RN R ER DA CHRYEETCR such as translating languages (by 2024),
writing high-school essays (by 2026), [\ [ ER (= ()220 21 B working in retail (by 2031),
writing a bestselling book (by 2049), and (W IL (Gl EEE R [Ty R (o200 5% )8 Researchers
believe there is a 50% chance of Al outperforming humans in all tasks in 45 years and of

with Asian respondents expecting these dates much
sooner than North Americans. These results will inform discussion amongst researchers and
policymakers about anticipating and managing trends in Al.

Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang & Owain Evans

Viewpoint: When Will Al Exceed Human Performance? Evidence from Al Experts
Journal of Artificial Intelligence Research - 2018
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Thank you!
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