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Deep Learning

Early efforts

Current state

Future outlook

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

Performance

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

General Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence

improves as we learn
from Al

Human

Al

Time

Abmed Hosny , Chintan Parmar, John Quackenbush , Lawrence H Schwartz and Hugo JWIL Aerts
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Deep Learning

a Predefined engineered features + traditional machine learning

Feature engineering

Histogram

&
Texture Shape

Expert knowledge

Selection

v

Classification
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b Deep learning
Input Hidden layers

Output

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

Increasingly higher-level features

Abhmed Hosny , Chintan Parmar, John Quackenbush , Lawrence H Schwartz and Hugo JW1. Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018




What is the intuition behind neural networks?

How do neural networks learn?

How to train neural networks?




What is the intuition behind neural networks?




Machine Learning: 4 Main Components

* Model/Representation

e Cost/Error/Loss of model
e Model Optimizer
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Graph Representation
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A Neural Network

YES

radius

o(1,1)

concavity

OUTPUT

HIDDEN LAYER(S)



A Neural Network
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How do neural networks learn?
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Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton{
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, Cafifornia 92093, USA

1 Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of like units. The p P adjusts
ithe weights of the connections in the nzrwmk so0 as to minimize a
measure of the difference between the actual output vector of the
net and the desired ouiput vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are capiured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perclplroa-mnvelzln:a procedure’.

ere have been many atempts to design s:ll-mgnnmng
n:ura} networks. The aim is to find a powerful synaptic
‘modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
outpul units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

7o whom correspondence should be addressed
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more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are “feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Cunnecuum within a layer or from higher to lower
layers are but if can skip i
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parailel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, x;, to unit j is a linear function of the outputs,
¥, of the units that are connecied to j and of the weights, Wi

on these connections

=Ly [$9]

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other w:ughts

A unit has a real-valued output, ich is a non-linear
function of its total input
1
N TFen (2)

Backpropagation & Gradient Descent in Neural Networks
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Colin cnariotte
14.2 " -14.2
\J Foverta = Maria Plarro = Francesca
-3.6 ) 36
o Gina = Emlio Lucia = Maree Angela = Tomasa
7.2 Y =71 Alfonsa Sophia
niggen | | - }/_ - Fig.2 Two isomorphic family trees The information can be
unit 72 71 expressed as a set of triples of the form (person |)relationship)
5 {person 2), where the possible relationships are {father, mother,
husband, wife, son, daughter, uncle, aunt, brother, sister, nephew,
36 T -36 niece] A layered net can be said to know” these triples if it can
" produce the third term of each triple when given the first two. The
first two terms are encoded by activating two of the input u
-14.2 142 and the network must then complete the proposition by activ
h P prop
L the output unit that represents the third term
Input units

Fig. 1 A network that has learned to deteet mirror symmetry in
the input vector. The numbers on the arcs are weights and the
numbecs inside the nodes are biases. The learning required 1,425
sweeps through the set of 64 possible input vectors, with the weights
being adjusted on the basis of the accumulated gradient after cach
sweep. The values of the parameters in equation (9) were £ =0.1
and a=09. The l weights were random and were uniformly
distributed between —0.3 and 0.3, The key property of this solution
is that for a given hidden unit, weights that are symmetric about
he middle of the input vector are equal in magnitude and opposite
in sign_So if a symmetrical pattern is presented, both hidden units
will receive a net input of 0 from the input units, and, because the
hidden units have a negative bias, both will be ofi. In this case the
output unit, having a positive bias, will be on. Note that the weights
on each side of the midpoint are in the ratio 1:2:4. This ensures
that each of the eight patierns that can occur above the midpoint
sends a unique activation sum Lo each hidden unit, so the only
pauem below the midpoint that can nmly balance this sum is

one. Forall patterns, both hidden
units will receive non-zero activations from the input units. The
two hidden units have identical patterns of weights but with
opposite signs, 5o for every non-symmetric pauern one hidden unit

will came on and suppress the output unit.

Itis not necessary to use exactly the functions given in equations
(1) and (2). Any input-output function which has a bounded
derivative will do. However, the use of a linear function for
combining the inputs to a unit before applying the nonlinearity
greatly simplifies the learning procedure.

The aim is to find a set of weights that ensure that for cach
input vector the output vector produced by the network is the
same as (or sufficiently close to) the desired output vector. If
there is a fixed, finite set of input-output cases, the total error
in the performance of the network with a particular set of weights
can be computed by comparing the actual and desired output
vectors for every case. The total error, E, is defined as

E ={):)‘:(Jﬂ,‘,~d“)’ (3)

where ¢ is an index over cases (input-output pairs), j is an
index over output units, ¥ is the actval state of an output unit
and d is its desired state. To minimize E by gradient descent
it is necessary to compute the partial derivative-of-E-with respect
to each weight in the network. This is simply the sum of the
partial derivatives for cach of the input-output cases For a
given case, the partial z_!:nvauves of the error with. respect to
cach_weight are computed in_two passes. We have already
described the forward pass in which the units in each layer have
their states determined by the input they receive from units in

lower layers using equations (1) and (2). The backward pass
which fees (rom the 1ap |§FEF BREE . the

bottom one is m is more complicated

Fig. 3 Activity levels in a five-layer newwork after it has learned
The bottom layer has 24 input units on the left for representing
(person 1) and 12 input units on the right for representing the
relationship. The white squares inside these two groups show the
activity levels of the units. There is one active unit in the first group
representing Colin and one in the second group representing the
relationship *has-aunt’ Each of the two input groups is totally
connected to its own group of 6 units in the second layer These
groups leam to encade people and relationships as diswributed
patterns of activity. The second layer is totally connected to the
central layer of 12 units, and these are connected to the penultimate
layer of 6 units. The activity in the penukimate layer must activate
the correct output units, cach of which stands for a particular
(person 2). In this case, there are two correct answers (marked by
black dts) because Colin has two aunts Both the input units and
the output units are laid out spatially with the English people in
one row and the isomorphic ltalians immediately beiow,

The backward pass starts by computing 3E/dy for each of
the output units. Differentiating equation (3) for a particular
case, ¢, and suppressing the index ¢ gives

BE /3y, =y;—d, (4)
We can then apply the chain rule to compute 3E/dx;
3E fax, =dE/ay, dy/dx,
Differentiating equation (2) to get the value of dy,/dx; and
substituting gives
8E/ax,=3E [ay;y(1-y) (%)
This means that we know how a change in the total input x to
an output unit will affect the error. But this total input is just a
linear function of the states of the lower level units and it is
also a linear function of the weights on the connections, so it
is easy to compute how the error will be affected by changing
these states and weights. For a weight wy, from i to j the
derivative is
3E[awy =3E/dx;: ax)/awy
=3E/ax yi {6)
and for the output of the " unit the contribution to JE/ay,

David E. Rumelbart, Geoffrey E. Hinton & Ronald ]. Williams

Learning Representations by Back-propagating Errors
Nature - 1986



Iris Dataset

petal length & width Iris Versicolor Iris Setosa Iris Virginica
sepal length & width

R.A. Fisher

The Use of Multiple Measurements in Taxonomic Problems
Annual Eugenics - 1936
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v Data: iris dataset
v Model: 3-layer neural network
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How Neural Networks Learn

v Data: iris dataset label
v Model: 3-layer neural network 5 )
v Loss: cross entropy
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent
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v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy
v Optimizer: gradient descent

1. parameter initialization
2. data input
3. forward propagation
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent

1. parameter initialization
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3. forward propagation
4. loss calculation
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent

1. parameter initialization
2. data input

3. forward propagation
4. loss calculation
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent

1. parameter initialization
2. data input

3. forward propagation
4. loss calculation
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent

1. parameter initialization

2. data input

3. forward propagation

4. loss calculation

5. backpropagation + updates
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v Data: iris dataset

v Model: 3-layer neural network
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v Data: iris dataset
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How Neural Networks Learn

v Data: iris dataset

v Model: 3-layer neural network
v Loss: cross entropy

v Optimizer: gradient descent

1. parameter initialization

2. data input

3. forward propagation

4. loss calculation

5. backpropagation + updates
6. repeat 2,3,4, & 5
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Gradient Descent Flavors

vanilla gradient descent - entire dataset
stochastic gradient descent - random batch of samples (lID)
online gradient descent - (need not be 1ID)



Gradient Descent Flavors

vanilla gradient descent - entire dataset
stochastic gradient descent - random batch of samples (lID)

online gradient descent - (need not be 1ID)

_batch size i # of epochs



How to train neural networks?




The Perfect Fit
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Deep Learning
MIT Press - 2016
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Hyperparameters

model-specific ' optimizer-specifc

architecture learning rate

activations batch size
initializations # of epochs
loss functions

optimizers

regularizers
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Christian Szegedy, Wei Liu, Yangqing Jia, et al.

Going Deeper with Convolutions (GoogleNet/Inception)

CVPR - 2015
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Activations

step

X non-differentiable

sigmoid
 smooth + step-like
' good activations close to 0

+ activations are bound 0~1
X vanishing gradients



Activations

step sigmoid tanh
1 X non-differentiable ’  smooth + step-like : ' scaled sigmoid
' good activations close to 0  stronger activations
+ activations are bound 0~1 X vanishing gradients
- ; . r X vanishing gradients

Yann LeCun, Leon Bottou, Genevieve B. Orr ¢ Klaus -Robert Miiller

Efficient BackProp
Neural Networks: Tricks of the Trade - 1998



Activations

step

1 X non-differentiable

RelLU

V efficient
X dead nodes

X not bound

Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton

 sparse activations

sigmoid
 smooth + step-like
' good activations close to 0

+ activations are bound 0~1
X vanishing gradients

tanh

' scaled sigmoid
 stronger activations
X vanishing gradients

ImageNet Classification with Deep Convolutional Neural Networks

Advances in Neural Information Processing - NIPS 2012



Activations

step

1 X non-differentiable

RelLU
10 + sparse activations
V efficient
X dead nodes
X not bound

Kaiming He, Xiangyu Zhang, Shaoqing Ren & Jian Sun

'
—

sigmoid
 smooth + step-like
' good activations close to 0

+ activations are bound 0~1
X vanishing gradients

Leaky RelLU

V nho dead nodes

tanh

' scaled sigmoid
 stronger activations
X vanishing gradients

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
International Conference on Computer Vision - ICCV 2015



Activations

step sigmoid
1 X non-differentiable

1  smooth + step-like
' good activations close to 0
+ activations are bound 0~1

s ] - 5 X vanishing gradients - s
-1
RelLU Leaky RelLU
10  sparse activations 10  no dead nodes 10

V efficient
X dead nodes
X not bound

-10 10 - 0 10 -

Djork-Arné Clevert, Thomas Unterthiner & Sepp Hochreiter

tanh

' scaled sigmoid
 stronger activations
X vanishing gradients

ELU

 robust to noise
X expensive

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)

International Conference on Computer Vision - ICCV 2015



Activations

step

X non-differentiable

RelLU

 sparse activations
V efficient

X dead nodes

X not bound

10

sigmoid
v/ smooth + step-like
' good activations close to 0

 activations are bound 0~1
X vanishing gradients

Leaky RelLU

V nho dead nodes

-10

10

10

tanh

' scaled sigmoid
 stronger activations
X vanishing gradients

ELU

' robust to noise
X expensive



Initializations

0 - stuck at a saddle point
constants - difficult to break the symmetry
large random values - small gradients, slow convergence



Initializations

Tensorflow initializer distribution - 10k samples

Zeros ones

random_normal random_uniform

glorot_normal glorot_uniform
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Initializations

Tensorflow initializer distribution - 10k samples

Zeros ones

Step loss with different weight initialization

Zeros

ones
random_normal
random_uniform
glorot_normal
glorot_uniform
orthogonal
identity

random_normal random_uniform

glorot_normal glorot_uniform

loss

200

o B g

-01 L] 01

orthogonal identity

0 500 1000 1500 2000 2500

steps



Initializations

Name o 8 oy Reference
Constant a=0 =0 v> 0 used by [ZF14]
—> Xavier/Glorot uniform « = ﬂfﬁ g=10 v=0 [GB10]
2
—> Xavier/Glorot normal «a =0 3= (tnfm) v=0 [GBI10]
—> He a=0 B === v=0 [HZRS15b]
Orthogonal — — v=0 [SMG13]
LSUV . . vy=0 [MM15]

Table B.2.: Weight initialization schemes of the form w ~ a - U[-1,1] + 3 - N(0,1) + .
Nin, Mout aTe the number of units in the previous layer and the next layer. Typically,
blases are initialized with constant 0 and weights by one of the other schemes to prevent
unit-coadaptation. However, dropout makes it possible to use constant initialization for
all parameters.
LSUV and Orthogonal initialization cannot be described with this simple pattern.

Martin Thoma

Analysis and Optimization of Convolutional Neural Network Architectures
https://arxiv.org/pdf/1707.09725.pdf



Loss Functions

regression - mean squared error

multiclass classification - categorical cross entropy

pixel classification - dice/ Wasserstein dice coefficient



Optimizers

stochastic gradient descent + momentum



Optimizers

stochastic gradient descent + momentum

adaptive gradient (AdaGrad)

John Duchi, Elad Hazan & Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
Journal of Machine Learning Research - 2011



Optimizers

stochastic gradient descent + momentum

adaptive gradient (AdaGrad)

root mean square propagation (RMSProp)

Geoffrey Hinton

Coursera: Neural Networks for Machine Learning - Lecture 6
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf



Optimizers

, —— — sgd
-  momentum |
— — nag y
— adagrad N
/) adadelta |3
/ (—\ rmsprop ::
: . \\\\ .

80 100 120

https:/fimgur.com/a/Hgolp



Regularizers

L1, L2 regularization

Enew =L+ %|W|

A

Enew = L 4+ §W2



Regularizers

L1, L2 regularization

Lopew = L+ %lW\

A

Enew = L 4+ §W2

https:llalistapart.com/article/accessibility-whack-a-mole by Eleanor Ratliff



Regularizers

dropout
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(a) Standard Neural Net (b) After applying dropout.
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever & Rusian Salakhutdinov

Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Journal of Machine Learning Research - 2014



Regularizers
batch normalization

AN\ A N
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>~
7

Sergey loffe & Christian Szegedy

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Journal of Machine Learning Research - 2014



Regularizers

batch normalization
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Sergey loffe & Christian Szegedy
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7

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Journal of Machine Learning Research - 2014



Optimizer-specifc Hyperparameters

learning rate
0.1, 0.01, 0.001, 0.0001,...
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Optimizer-specifc Hyperparameters

Joss

0.1, 0.01, 0.001, 0.0001,...

e
e

Joss

\4

learning rate

/|

N\

e

I
.

A4



Optimizer-specifc Hyperparameters

learning rate
0.1, 0.01, 0.001, 0.0001,...
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Optimizer-specifc Hyperparameters

learning rate
0.1, 0.01, 0.001, 0.0001,...

N N N

Joss
eet
Joss
loss
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batch size

16, 32, 64, 128,...



Optimizer-specifc Hyperparameters

learning rate
0.1, 0.01, 0.001, 0.0001,...

N N N

eet
Joss
loss

Joss

<
batch size # of epochs

16, 32, 64, 128,... early stopping



Babysitting your Network

lossfunctions

They are a window to your model's heart.

Contribute loss functions to @karpathy. It doesn't matter if your loss functions are flat, converge, diverge, step or oscillate (or any combination of the above). All loss functions are computed beautiful in their own way and are sought
after with equal tenacity.

POSTS ARCHIVE

[ — train , valid Ea
— 2 5. e
== -
| | E EE a8 a
. 1” = . -
| = ) .
| I‘ =t -
i N = 2
| wa T AT ‘ =
L | ift =i 48 = |
i i_\i by il | A Tl s ‘
¢ . =] . F
i e = ‘ i |
» Ay L pudaipaied 0 200 400 80 800
Everything working as intended over here Spatial Transformer Network identifying right whales, L2 reg and loss
plot.
o o5 . . v - e e e oe e
11 notes 2 Q Contributed by @robibok
Taming Spatial Transformer Networks, contributed by Diogo. For the
Aiotes .,__'. V) record, it's not supposed to look like that.

https://lossfunctions.tumblr.com/



Debugging through Learning Curves
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Debugging through Learning Curves
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Debugging through Learning Curves
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Debugging through Learning Curves
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Debugging through Learning Curves
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Thank you!
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